Analisis Sentimen Masyarakat Terhadap Kebijakan IKN Pada Periode Jokowi dan Prabowo Menggunakan Algoritma NBC, SVM, dan K-NN


  • Nur Shabrina Nasution * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Inggih Permana Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Febi Nur Salisah Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • M Afdal Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Megawati Megawati Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Sentiment Analysis; IKN; Naive Bayes Classifier; Support Vector Machine; K-Nearest Neighbour

Abstract

The relocation of the National Capital City (IKN) from Jakarta to East Kalimantan has generated a variety of responses from the Indonesian people recorded through social media, especially platform X. This study aims to analyze and compare public sentiment towards the IKN policy in two periods of government, namely President Joko Widodo and President Prabowo Subianto. This study aims to analyze and compare public sentiment towards the policy of the National Capital City during two periods of government, namely President Joko Widodo and President Prabowo Subianto, using a machine learning approach. The three algorithms used in sentiment classification are Naive Bayes Classifier (NBC), Support Vector Machine (SVM), and K-Nearest Neighbor (K-NN). The research process includes data crawling (600 data each per period), text preprocessing (cleaning, tokenizing, filtering, stemming), data labeling using Lexicon-Based approach with InSet dictionary, and weighting using TF-IDF method. The results of the analysis show that in the Jokowi period, public sentiment tends to be more balanced, with the dominance of negative sentiment (35.9%), followed by positive sentiment (33.4%) and neutral (30.7%). Whereas in the Prabowo period, negative sentiment increased to 40.3%, while positive decreased to 26.3%. Based on the model accuracy evaluation, in the Jokowi period, the NBC algorithm showed the best performance with an accuracy of 73%, while in the Prabowo period, the SVM algorithm excelled with the highest accuracy reaching 81%. These findings provide a dynamic picture of public perception of IKN policies under two different governments.

Downloads

Download data is not yet available.

References

A. Setiawan and R. R. Suryono, “Analisis Sentimen Ibu Kota Nusantara menggunakan Algoritma Support Vector Machine dan Naïve Bayes,” Edumatic J. Pendidik. Inform., vol. 8, no. 1, pp. 183–192, 2024, doi: 10.29408/edumatic.v8i1.25667.

G. Aji, Z. Arfani, A. M. Sari, R. Seprtiani, and U. K. H. Abdurrahman Wahid, “Dampak Pemindahan Ibukota Negara Baru terhadap Ekonomi dan Sosial di Provinsi Kalimantan Timur,” J. Ilmu Huk., vol. 1, no. 5, pp. 2985–5624, 2023, doi: https://doi.org/10.572349/kultura.v1i5.474.

H. P. Sutanto, “Transformasi Sosial Budaya Penduduk IKN Nusantara,” J. Stud. Kebijak. Publik, vol. 1, no. 1, pp. 43–56, 2022, doi: https://doi.org/10.21787/jskp.1.2022.43-56.

M. H. Al Habib, A. Dairobbi, R. A. Zoya, and R. R. Pramasha, “Dampak Pembangunan Ikn Nusantara: Menjadi Solusi Pemerataan Perekonomian Atau Timbul Permasalahan Lingkungan?,” IJEN Indones. J. Econ. Educ. Econ., vol. 02, no. 02, pp. 405–411, 2024, [Online]. Available: https://jurnal.academiacenter.org/index.php/IJEN/article/view/504

S. Budi Setiawan and A. Rahman Isnain, “Sentimen Analisis Masyarakat Terhadap Pembangunan IKN Menggunakan Algoritma Lexicon Based Approach dan Naïve Bayes Samuel,” J. Media Inform. Budidarma, vol. 8, no. 2, pp. 1019–1030, 2024, doi: 10.30865/mib.v8i2.7605.

J. Muliawan and E. Dazki, “Sentiment Analysis of Indonesia’S Capital City Relocation Using Three Algorithms: Naïve Bayes, Knn, and Random Forest,” J. Tek. Inform., vol. 4, no. 5, pp. 1227–1236, 2023, doi: 10.52436/1.jutif.2023.4.5.1436.

N. Husin, “Komparasi Algoritma Random Forest, Naïve Bayes, dan Bert Untuk Multi-Class Classification Pada Artikel Cable News Network (CNN),” J. Esensi Infokom J. Esensi Sist. Inf. dan Sist. Komput., vol. 7, no. 1, pp. 75–84, 2023, doi: 10.55886/infokom.v7i1.608.

Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, vol. 10, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.

A. Widyanto, K. Kusrini, and K. Kusnawi, “Pengaruh Keseimbangan Data terhadap Akurasi Model Support Vector Machine pada Data Set Donor Darah,” J. Teknol. Terpadu, vol. 9, no. 2, pp. 79–88, 2023, doi: 10.54914/jtt.v9i2.771.

A. R. Hakim, W. Gata, A. Z. P. Widodo, O. Kurniawan, and A. R. Syarif, “Analisis Perbandingan Algoritma Machine Learning Terhadap Sentimen Analis Pemindahan Ibu Kota Negara,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 7, no. 2, pp. 179–185, 2023, doi: 10.35870/jtik.v7i2.701.

A. S. YUNATA, A. HALIM, and H. LUTHFIYAH, “Analisis Pengaruh Noise pada Performa K-Nearest Neighbors Algorithm dengan Variasi Jarak untuk klasifikasi Beban Listrik,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 12, no. 3, p. 745, 2024, doi: 10.26760/elkomika.v12i3.745.

D. Pramana, M. Afdal, M. Mustakim, and I. Permana, “Analisis Sentimen Terhadap Pemindahan Ibu Kota Negara Menggunakan Algoritma Naive Bayes Classifier dan K-Nearest Neightbors,” J. Media Inform. Budidarma, vol. 7, no. 3, p. 1306, 2023, doi: 10.30865/mib.v7i3.6523.

K. A. Lubis, M. T. A. Bangsa, and A. Yudertha, “Analisis Sentimen Opini Masyarakat terhadap Pindahnya Ibu Kota Indonesia dengan menggunakan Klasifikasi Naïve Bayes,” J. Teknoinfo, vol. 18, no. 1, pp. 226–238, 2024, [Online]. Available: https://ejurnal.teknokrat.ac.id/index.php/teknoinfo/index

N. Hadi and D. Sugiarto, “Analisis Sentimen Pembangunan IKN pada Media Sosial X Menggunakan Algoritma SVM , Logistic Regression dan Naïve Bayes,” J. Inform. J. Pengemb. IT, vol. 10, no. 1, pp. 37–49, 2025, doi: 10.30591/jpit.v10i1.7106.

A. Munawaroh, R. Ridhoi, and R. Rudiman, “Sentiment Analysis Dengan Naïve Bayes Berbasis Orange Terhadap Resiko Pembangunan Ikn,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 587–592, 2024, doi: 10.36040/jati.v8i1.8454.

Aurumnisva Faturrahmi, Zamahsary Martha, Yenni Kurniawati, and Fadhilah Fitri, “Sentiment Analysis of Prabowo Subianto as 2024 Presidential Candidate on Twitter Using K-Nearest Neighbor Algorithm,” UNP J. Stat. Data Sci., vol. 1, no. 5, pp. 385–391, 2023, doi: 10.24036/ujsds/vol1-iss5/101.

S. S. Sohail et al., “Crawling Twitter data through API: A technical/legal perspective,” 2021, [Online]. Available: http://arxiv.org/abs/2105.10724

I. Yanti and E. Utami, “Sentiment Analysis Of Indonesia ’ S Capital Relocation Using Word2vec And Long Short-Term Memory Method Analisis Sentimen Pemindahan Ibu Kota Indonesia Menggunakan Word Embedding Word2vec Dan Metode Long Short-Term,” vol. 6, no. 1, pp. 149–157, 2025, doi: https://doi.org/10.52436/1.jutif.2025.6.1.2712.

S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” J. Media Inform. Budidarma, vol. 5, no. 2, p. 406, 2021, doi: 10.30865/mib.v5i2.2835.

D. R. Fathwa Daud, B. Irawan, and A. Bahtiar, “Penerapan Metode Naive Bayes Pada Analisis Sentimen Aplikasi Mcdonalds Di Google Play Store,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 759–766, 2024, doi: 10.36040/jati.v8i1.8784.

M. Theofany Aulia Anwar, S. Hadi Wijoyo, and W. Hayuhardhika Nugraha Putra, “Implementasi Metode TextRank dan Named Entity Recognition Untuk Ekstraksi Kata Kunci Pada Media Online Berita,” J. Sist. Informasi, Teknol. Informasi, dan Edukasi Sist. Inf., vol. 5, no. 1, pp. 34–41, 2024, doi: 10.25126/justsi.v5i1.401.

Rianto, A. B. Mutiara, E. P. Wibowo, and P. I. Santosa, “Improving the accuracy of text classification using stemming method, a case of non-formal Indonesian conversation,” J. Big Data, vol. 8, no. 1, pp. 1–16, 2021, doi: 10.1186/s40537-021-00413-1.

J. A. Rieuwpassa, S. Sugito, and T. Widiharih, “Implementasi Metode Naive Bayes Classifier Untuk Klasifikasi Sentimen Ulasan Pengguna Aplikasi Netflix Pada Google Play,” J. Gaussian, vol. 12, no. 3, pp. 362–371, 2024, doi: 10.14710/j.gauss.12.3.362-371.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,” J. Tekno Kompak, vol. 15, no. 1, p. 131, 2021, doi: 10.33365/jtk.v15i1.744.

F. Abdusyukur, “Penerapan Algoritma Support Vector Machine (Svm) Untuk Klasifikasi Pencemaran Nama Baik Di Media Sosial Twitter,” Komputa J. Ilm. Komput. dan Inform., vol. 12, no. 1, pp. 73–82, 2023, doi: 10.34010/komputa.v12i1.9418.

A. D. Adhi Putra, “Sentiment Analysis on User Reviews of the Bibit and Bareksa Application with the KNN Algorithm,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, pp. 636–646, 2021.

Y. Jin, “Development of Word Cloud Generator Software Based on Python,” Procedia Eng., vol. 174, pp. 788–792, 2017, doi: 10.1016/j.proeng.2017.01.223.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Masyarakat Terhadap Kebijakan IKN Pada Periode Jokowi dan Prabowo Menggunakan Algoritma NBC, SVM, dan K-NN

Dimensions Badge
Article History
Submitted: 2025-05-04
Published: 2025-06-01
Abstract View: 730 times
PDF Download: 175 times
How to Cite
Nasution, N., Permana, I., Salisah, F., Afdal, M., & Megawati, M. (2025). Analisis Sentimen Masyarakat Terhadap Kebijakan IKN Pada Periode Jokowi dan Prabowo Menggunakan Algoritma NBC, SVM, dan K-NN. Building of Informatics, Technology and Science (BITS), 7(1), 157-168. https://doi.org/10.47065/bits.v7i1.7276
Section
Articles

Most read articles by the same author(s)

1 2 3 > >>