Perbandingan Algoritma Linear Regression, Support Vector Regression, dan Artificial Neural Network untuk Prediksi Data Obat
Abstract
Regression is a crucial focus in various fields aiming to forecast future values to aid decision-making and strategic planning. Different regression algorithms have their advantages and disadvantages, and their performance can vary depending on the data characteristics. Therefore, further analysis is needed to identify the appropriate algorithm that provides the best solution for the problem at hand. This study compares three popular regression algorithms: Linear Regression (LR), Support Vector Regression (SVR), and Artificial Neural Network (ANN) to predict drug data at a pharmacy in Riau province. Currently, the pharmacy lacks an accurate method for estimating monthly drug needs, relying instead on rough estimates. This often results in either shortages or overstock, leading to losses, especially if the drugs expire. Three types of drugs, namely Amoxicillin, Antacids, and Paracetamol were selected to test the proposed algorithms. The analysis and comparison show that the SVR algorithm outperforms the others on all three drug types when focusing on the RMSE metric. However, when the focus is on the MAPE metric, the ANN algorithm proves to be superior. Although LR does not excel in any metric, all three algorithms (LR, SVR, and ANN) have MAPE values below 10%, indicating highly accurate predictions. This accuracy is evidenced by the prediction results of all proposed models, which effectively follow the patterns and trends in the actual data
Downloads
References
A. Prasetyo, S. Salahuddin, and A. Amirullah, “Prediksi Produksi Kelapa Sawit Menggunakan Metode Regresi Linier Berganda,” Jurnal Infomedia, vol. 6, no. 2, p. 76, 2021, doi: 10.30811/jim.v6i2.2343.
A. D. Sidik and A. Ansawarman, “Prediksi Jumlah Kendaraan Bermotor Menggunakan Machine Learning,” Formosa Journal of Multidisciplinary Research, vol. 1, no. 3, pp. 559–568, 2022, doi: 10.55927/fjmr.v1i3.745.
R. Ternando, J. Wahyudi, and D. Suranti, “Application of the Multiple Linear Regression Method in Forecasting the Amount of Drug Supply at the Health Center,” Jurnal Komputer, Informasi dan Teknologi (JKOMITEK), vol. 2, no. 2, pp. 621–628, 2022, doi: 10.53697/jkomitek.v2i2.1043.
A. M. A. Rusdy, P. Purnawansyah, and H. Herman, “Penerapan Metode Regresi Linear Pada Prediksi Penawaran dan Permintaan Obat Studi Kasus Aplikasi Point Of Sales,” Buletin Sistem Informasi dan Teknologi Islam, vol. 3, no. 2, pp. 121–126, 2022, doi: 10.33096/busiti.v3i2.1130.
P. Bhola and S. Bhardwaj, “Estimation of solar radiation using support vector regression,” Journal of Information and Optimization Sciences, vol. 40, no. 2, pp. 339–350, 2019, doi: 10.1080/02522667.2019.1578093.
Q. Quan, Z. Hao, H. Xifeng, and L. Jingchun, “Research on water temperature prediction based on improved support vector regression,” Neural Computing and Applications, vol. 34, no. 11, pp. 8501–8510, 2022, doi: 10.1007/s00521-020-04836-4.
H. Putra and N. U. Walmi, “Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 6, no. 2, pp. 100–107, 2020.
M. Masruroh and K. F. Mauladi, “Penerapan Metode Regresi Linear Berganda Dalam Sistem Prediksi Nilai Ujian Nasional Siswa Smp,” Jurnal Teknika, vol. 12, no. 1, p. 1, 2020, doi: 10.30736/jt.v12i1.393.
S. Saadah, F. Z. Z, and H. H. Z, “Support Vector Regression (SVR) Dalam Memprediksi Harga Minyak Kelapa Sawit di Indonesia dan Nilai Tukar Mata Uang EUR/USD,” Journal of Computer Science and Informatics Engineering (J-Cosine), vol. 5, no. 1, pp. 85–92, 2021, doi: 10.29303/jcosine.v5i1.403.
G. H. Saputra, A. H. Wigena, and B. Sartono, “Penggunaan Support Vector Regression Dalam Pemodelan Indeks Saham Syariah Indonesia Dengan Algoritme Grid Search,” Indonesian Journal of Statistics and Its Applications, vol. 3, no. 2, pp. 148–160, 2019, doi: 10.29244/ijsa.v3i2.172.
N. Tampati, “Prediksi Stok Obat pada Apotik Total Life Clinic Menggunakan Model Kombinasi Artificial Neural Network dan ARIMA,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 1, pp. 49–58, 2022, doi: 10.35957/jatisi.v9i1.1373.
Z. Jannah and K. Budayawan, “Pengembangan Sistem Cerdas Berbasis Data Mining untuk Meningkatkan Akurasi Prediksi Kebutuhan Obat di Puskesmas Parit Rantang,” Al-DYAS, vol. 3, no. 1, pp. 467–479, 2024.
S. Agnesti, A. Nazir, I. Iskandar, E. Budianita, and I. Afrianty, “Perbandingan Algoritma Triple Exponential Smoothing dan Support Vector Regression dalam Prediksi Pemakaian Obat di Puskesmas,” SISTEMASI: Jurnal Sistem Informasi, vol. 12, no. 3, pp. 996–1006, 2023, doi: 10.32520/stmsi.v12i3.3499.
S. Pratista, A. Nazir, I. Iskandar, E. Budianita, and I. Afrianty, “Perbandingan Prediksi Obat Berdasarkan Pemakaian Menggunakan Algoritma Single Moving Average dan Support Vector Regression,” Jurnal Media Informatika Budidarma, vol. 7, no. 4, pp. 1860–1868, 2023, doi: 10.30865/mib.v7i4.6859.
R. Novita, I. Yani, and G. Ali, “Sistem Prediksi untuk Penentuan Jumlah Pemesanan Obat Menggunakan Regresi Linier,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 2, no. 1, pp. 62–70, 2022, doi: 10.57152/malcom.v2i1.198.
N. E. Warestika, D. Sugiarto, and T. Siswanto, “Business Intelligence Design for Data Visualization and Drug Stock Forecasting,” Intelmatics, vol. 1, no. 1, pp. 9–15, 2021, doi: 10.25105/itm.v1i1.7407.
A. Rahmadeyan, Mustakim, M. Erkamim, I. Ahmad, Sepriano, and S. Aziz, “Air Pollution Prediction Using Long Short-Term Memory Variants,” in Advances in Intelligent Computing Techniques and Applications, Springer, 2024, pp. 122–132.
R. E. Cahyono and J. P. Sugiono, “Analisis Kinerja Metode Support Vector Regression (SVR) dalam Memprediksi Indeks Harga Konsumen,” Jurnal Teknologi Informasi dan Multimedia, vol. 1, no. 2, pp. 106–116, 2019, doi: 10.35746/jtim.v1i2.22.
Y. Yang, J. Che, C. Deng, and L. Li, “Sequential grid approach based support vector regression for short-term electric load forecasting,” Applied Energy, vol. 238, pp. 1010–1021, 2019, doi: 10.1016/j.apenergy.2019.01.127.
N. Sepriyanti, R. S. Nahampun, M. H. Zikri, I. Ambarani, and A. Rahmadeyan, “Implementation of K-Means Clustering to Group Poverty Levels in Riau Province,” in SENTIMAS: Seminar Nasional Penelitian Dan Pengabdian Masyarakat, 2022, pp. 59–65.
A. Rahmadeyan, Mustakim, I. Ahmad, A. D. Alexander, and A. Rahman, “Phishing Website Detection with Ensemble Learning Approach Using Artificial Neural Network and AdaBoost,” in 2023 International Conference on Information Technology Research and Innovation (ICITRI), 2023, pp. 162–166, doi: 10.1109/ICITRI59340.2023.10249799.
A. Rahmadeyan and Mustakim, “Long Short-Term Memory and Gated Recurrent Unit for Stock Price Prediction,” Procedia Computer Science, vol. 234, pp. 204–212, 2024, doi: 10.1016/j.procs.2024.02.167.
N. T. Luchia, E. Tasia, I. Ramadhani, A. Rahmadeyan, and R. Zahra, “Performance Comparison Between Artificial Neural Network, Recurrent Neural Network and Long Short-Term Memory for Prediction of Extreme Climate Change,” Public Research Journal of Engineering, Data Technology and Computer Science, vol. 1, no. 2, pp. 62–70, 2024, doi: 10.57152/predatecs.v1i2.864.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Algoritma Linear Regression, Support Vector Regression, dan Artificial Neural Network untuk Prediksi Data Obat
Pages: 54−63
Copyright (c) 2024 Suci Maharani Putri, Rice Novita, Mustakim Mustakim, M Afdal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).





















