Penerapan Algoritma Artificial Neural Network dan Economic Order Quantity dalam Memprediksi Persediaan Pengendalian BBM
Abstract
Motor vehicle production in Indonesia increases every year along with increasing demand for fuel as a raw material. Generally, gas stations carry out the process of ordering fuel from Dempo on an irregular basis, the frequency of orders does not have a certain time, orders depend on sales transactions and the amount of fuel inventory available depends on the fuel in storage. Regarding prediction and control of fuel supplies, the risk at gas stations is that the volume of fuel received is different from that ordered. It is suspected that tank trucks carrying fuel during delivery from the depot to gas stations tend to experience evaporation in the tank (loses), so that the fuel quantity decreases. Requests for fuel filling are only based on monitoring without any special calculations resulting in stock being maintained and not covering consumer demand. This research is to analyze the Artificial Neural Network algorithm in predicting fuel, and determine inventory control using Economic Order Quantity. The research was conducted using data from November 2020 - October 2023. The data was processed using the ANN algorithm using Google Colab, and continued with EOQ using Microsoft Excel. The ANN parameters are 1 hidden layer with 100 units, Adam optimizer, learning rate 0.001, batch size 8 and epoch 200. Pertalite ANN test results are MSE 248852593.81 and MAE 12749.45, while Pertamax Turbo MSE 803842.94 and MAE 672, 74 provides predictions for November and December of 11,1436.82 L and 11,1960.83 L and Pertamax Turbo of 3,782.46 L and 3,660.70 L. Furthermore, in 2023 the fuel EOQ of Pertalite and Pertamax Turbo will be 8,445 L and 5,261 L, Safety Stock 3,516 L and 1,064 L, Maximum Inventory 6,042 L and 5,153 L, Re order point 2,403 L and 108 L, Order frequency 149 times and 6 times with Total Inventory Cost Rp. 178,830,302 and Rp. 7,700,459.
Downloads
References
I. R. Mahartika and A. Wibowo, “Data Mining Klasterisasi dengan Algoritme K-Means untuk Pengelompokkan Provinsi Berdasarkan Konsumsi Bahan Bakar Minyak Nasional,” Pros. Semin. Nas. SISFOTEK (Sistem Inf. dan Teknol., vol. 3, no. 1, pp. 87–91, 2019.
M. Kafil, “Penerapan Metode K-Nearest Neighbors,” J. Mhs. Tek. Inform., vol. 3, no. 2, pp. 59–66, 2019.
S. F. Sabbeh, “Machine-learning techniques for customer retention: A comparative study,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 2, 2018.
C. Dewi and M. Muslikh, “Perbandingan Akurasi Backpropagation Neural Network dan ANFIS Untuk Memprediksi Cuaca,” J. Sci. Model. Comput., vol. 1, no. 1, p. 7, 2013.
T. S. N. P. putri Septiana, mohamad al Fikih, and N. Setyawan, “FACE MASK DETECTION COVID-19 USING CONVOLUTIONAL NEURAL NETWORK (CNN),” Semin. Nas. Teknol. dan Rekayasa, 2020.
S. Enggari, R. Agung, and H. Marfalino, “PENINGKATAN DIGITAL IMAGE PROCESSING DALAM MENDESKRIPSIKAN TUMBUHAN JAMUR DENGAN SEGMENTASI WARNA, DETEKSI TEPI DAN KONTUR,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 4, no. 1, pp. 70–75, 2022.
F. A. Bobsaid, “Peramalan permintaan menggunakan jaringan syaraf tiruan dan usulan perencanaan persediaan spare part dengan economic order quantity probabilistik untuk memenuhi permintaan produk remanufaktur torq flow assy unit hd 785-7 di PT. XYZ,” SKRIPSI-2020, 2020.
J. Veri, S. Surmayanti, and G. Guslendra, “Prediksi Harga Minyak Mentah Menggunakan Jaringan Syaraf Tiruan,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, pp. 503–512, 2022, doi: 10.30812/matrik.v21i3.1382.
J. Veronika and A. Andri, “Penerapan Metode Algoritma Neural Network Untuk Memprediksi Penjualan Bahan Bakar Minyak,” J. Inf. Technol. Ampera, vol. 3, no. 2, pp. 235–243, 2022, doi: 10.51519/journalita.volume3.isssue2.year2022.page235-243.
T. Yuniarti, I. Rusmar, T. Rachmi Hidayani, M. Mirnandaulia, and P. Teknologi Kimia Industri, “Penggunaan Artificial Neural Network (Ann) Untuk Memodelkan Volume Ekspor Crude Palm Oil (Cpo) Di Indonesia,” Ready Star 2, vol. 2, no. 1, pp. 247–255, 2019.
Y. Andriani, H. Silitonga, and A. Wanto, “Analisis jaringan syaraf tiruan untuk prediksi volume ekspor dan impor migas di indonesia,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 4, no. 1, pp. 30–40, 2018, doi: 10.26594/register.v4i1.1157.
L. D. Simbolon, PENGENDALIAN PERSEDIAAN. Nusa Tenggara Barat, 2021.
S. S. Iandini, “ANALISIS PENGENDALIAN PERSEDIAAN BARANG JADI DENGAN MENGGUNAKAN METODE ABC DAN METODE EOQ PADA SUPERMARKET PT RAMAYANA LESTARI SENTOSA TBK CABANG CIBINONG,” skripsi, 2022.
N. S. Dongoran, “Penerapan Algoritma Apriori Dan Economic Order Quantity Untuk Pengendalian Persedian Produk Di Almira Kids,” Repos. UIN SUSKA RIAU, 2019, [Online]. Available:
F. S. Lubis, A. N. Luthfi, and L. Surayya, “Analisis Pengendalian Jumlah Crude Oil Sebelum Dan Sesudah Pandemi Covid-19 Dengan Pendekatan Economic Order Quantity,” J. Rekavasi, vol. 10, no. 1, pp. 56–63, 2022, doi: 10.34151/rekavasi.v10i1.3873.
H. Mardiyanto, Inti sari manajemen keuangan. Grasindo, 2009.
R. Ratningsih, “Penerapan Metode Economic Order Quantity (EOQ) Untuk Meningkatkan Efisiensi Pengendalian Persediaan Bahan Baku Pada CV Syahdika,” J. Perspekt., vol. 19, no. 2, pp. 158–164, 2021, doi: 10.31294/jp.v19i2.11342.
B. A. P. Setiawan and R. K. Niswatin, “Sistem Kebutuhan Prioritas Stok Tanaman Hias Toko Rachel Jaya Menggunakan Algoritma K-Means dan EOQ (Economic Order Quantity),” Prosiding SEMNAS …, vol. 4, no. 1. 2020.
D. rosa Indah and Z. Maulida, “Pengendalian Persediaan Bahan Baku Pada PT. Aceh Rubber Industries Kabupaten Aceh Tamiang,” J. Manaj. dan Keuang., vol. 7, no. 2, p. 157, 2018, doi: 10.33059/jmk.v7i2.814.
I. Kurniati, H. Winarno, and D. Yuliyanti, “PEMANFAATAN ALGORITMA NEURAL NETWORK UNTUK PREDICTIVE ANALYTIC ANGKA BUTA HURUF DI INDONESIA,” J. ELEKTRO NFORMATIKA SWADHARMA, vol. 03, 2023.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma Artificial Neural Network dan Economic Order Quantity dalam Memprediksi Persediaan Pengendalian BBM
Pages: 404-415
Copyright (c) 2024 Walid Alma Ula, M Afdal, Zarnelly Zarnelly, Inggih Permana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).