Penerapan Algoritma FP-Growth untuk Menentukan Strategi Promosi Berdasarkan Waktu dan Pembelian Produk
Abstract
Sales is the main activity in every business. In making business decisions, sales patterns can be used to provide useful information such as strategies for promotion. Wandri Mart is a business engaged in the sale of products or goods commonly referred to as minimarkets in the city of Payakumbuh. In conducting promotional strategies, the owner of Wandri Mart does not know when to do promotions and what promotions are needed in order to increase sales. The purpose of this study is to obtain purchasing patterns related to the time of purchase and the type of goods purchased, so that a more effective promotional strategy can be developed. The method used by researchers is data mining techniques with the FP-Growth algorithm. The data used was taken as much as 5471 sales transaction data for 1 year. The results of this study indicate that the FP-Growth algorithm can be used to determine association rules using a minimum support of 1%, 2%, 3% and a minimum confidence of 10%. Experiments using Minimum Support 1% and Minimum Confidence 10% have the highest lift ratio value and produce more rules compared to other experiments so that it is obtained if on Tuesdays in August, customers buy instant noodles and packaged drinks with 6% and 5% support respectively and 50% and 45% confidence respectively with a lift ratio of 1.75 and 1.59 respectively. The lift ratio means that the rules have high association accuracy, and this also has a positive impact on sales and can be used as useful information for Wandri Mart to increase sales
Downloads
References
P. Studi, M. Teknik, U. Ahmad, and D. Yogyakarta, “PENERAPAN ALGORITMA FP - GROWTH UNTUK PENENTUAN POLA PEMBELIAN TRANSAKSI PENJUALAN PADA TOKO KGS RIZKY MOTOR,” vol. 25, no. 1, pp. 20–28, 2020.
S. Herdyansyah, E. H. Hermaliani, L. Kurniawati, and S. R. Sri Rahayu, “Analisa Metode Association Rule Menggunakan Algoritma Fp-Growth Terhadap Data Penjualan (Study Kasus Toko Berkah),” J. Khatulistiwa Inform., vol. 8, no. 2, pp. 127–133, 2020, doi: 10.31294/jki.v8i2.9277.
A. C. Putra and M. Habibi, “Analisis Asosiasi pada Transaksi Penjualan Daring Menggunakan Algoritma Apriori Dan FP-Growth,” Teknomatika, vol. 11, no. 2, pp. 119–129, 2019.
A. Anas, “Penerapan Algoritma Fp-Growth Dalam Menentukan Perilaku Konsumen Ghania Mart Muara Bulian,” vol. 14, no. 2, pp. 120–129, 2020.
A. Setiawan and I. G. Anugrah, “Penentuan Pola Pembelian Konsumen pada Indomaret GKB Gresik dengan Metode FP-Growth,” J. Nas. Komputasi dan Teknol. Inf., vol. 2, no. 2, p. 115, 2019, doi: 10.32672/jnkti.v2i2.1564.
R. Aditiya, S. Defit, and G. W. Nurcahyo, “Prediksi Tingkat Ketersediaan Stock Sembako Menggunakan Algoritma FP-Growth dalam Meningkatkan Penjualan,” J. Inform. Ekon. Bisnis, vol. 2, pp. 67–73, 2020, doi: 10.37034/infeb.v2i3.44.
S. P. Tamba, A. W. Tan, Y. Gunawan, and A. Andreas, “Penerapan Data Mining Untuk Pembuatan Paket Promosi Penjualan Menggunakan Kombinasi Fp-Tree Dan Tid-List,” J. Tek. Inf. dan Komput., vol. 4, no. 2, p. 201, 2021, doi: 10.37600/tekinkom.v4i2.309.
A. Ardianto and D. Fitrianah, “Penerapan Algoritma FP-Growth Rekomendasi Trend Penjualan ATK Pada CV . Fajar Sukses Abadi,” J. Telekomunikasi dan Komputer, 2019, doi: 10.22441/incomtech.v9i1.3263.
D. Cahyanti and I. Permana, “Comparison of Book Shopping Patterns Before and During the Covid-19 Pandemic Using the Fp-Growth Algorithm At Zanafa Perbandingan Pola Belanja Buku Sebelum Dan Masa Pandemi Covid-19 Menggunakan Algoritma Fp-Growth Pada Toko Buku,” J. Tek. Inform., vol. 3, no. 2, pp. 381–386, 2022.
M. Kamber and J. Han, Data Mining: Concepts and Techniques : Concepts and Techniques. 2018.
R. R. Rerung, “Penerapan Data Mining dengan Memanfaatkan Metode Association Rule untuk Promosi Produk,” J. Teknol. Rekayasa, vol. 3, no. 1, p. 89, 2018, doi: 10.31544/jtera.v3.i1.2018.89-98.
E. Munanda and S. Monalisa, “Penerapan Algoritma Fp-Growth Pada Data Transaksi Penjualan Untuk Penentuan Tataletak,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 7, no. 2, pp. 173–184, 2021, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/RMSI/article/view/13253.
H. Budianto and J. Riana, “Penerapan Data Mining menggunakanalgoritma Fp-Growth Untuk Penentuan Strategi Promosi Fakultas Ilmu Komputer Universitas Kuningan,” J. Cloud Inf., vol. 5, no. 1, pp. 22–29, 2020.
Mustika, Mustika, et al. DATA MINING DAN APLIKASINYA. Edited by Rismawati, N. CV WIDINA MEDIA UTAMA, 2021.
M. Mariko, “Perbandingan Algoritma Apriori Dan Algoritma Fp-Growth Untuk Rekomendasi Item Paket Pada Konten Promosi,” Explore, vol. 11, no. 2, p. 24, 2021, doi: 10.35200/explore.v11i2.438.
S. G. Setyorini, M. J. Adhiva, and S. A. Putri, “Penerapan Algoritma FP-Growth dalam Penentuan Pola Pembelian Konsumen,” pp. 180–186, 2020.
J. Zeniarja, “Pola Beli Konsumen Menggunakan Algoritma Fp-Growth Untuk Rekomendasi Promosi Pada Aneka Jaya Motor,” JOINS (Journal Inf. Syst., vol. 6, no. 1, pp. 48–55, 2021, doi: 10.33633/joins.v6i1.4493.
R. Rusnandi, S. Suparni, and A. B. Pohan, “Penerapan Data Mining Untuk Analisis Market Basket Dengan Algoritma Fp-Growth Pada Pd Pasar Tohaga,” J. Nas. Pendidik. Tek. Inform., vol. 9, no. 1, p. 119, 2020, doi: 10.23887/janapati.v9i1.19349.
I. Astrina, M. Z. Arifin, and U. Pujianto, “Penerapan Algoritma FP-Growth Dalam Penentuan Pola Pembelian Konsumen Pada Kain Tenun Medali Mas,” vol. 9, no. 1, pp. 32–40, 2019.
S. Z. dan N. A. Harahap, “Teknik Data Mining Untuk Penentuan Paket Hemat Sembako,” vol. 7, no. 3, pp. 111–119, 2019.
Y. A. M, F. Dristyan, and A. Syafnur, “Aplikasi Web Usage Mining Menggunakan Metode Association Rule Dengan Algoritma Fp-Growth Untuk Mengetahui Pola Browsing Pengunjung Website,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 1060, 2019, doi: 10.30645/senaris.v1i0.117.
D. Indahsari, “Penerapan Metode Asosiasi Dengan Algoritma FP-Growth Pada Data Transaksi PT John Tampi Group,” Comput. Based Inf. Syst. J., vol. 9, no. 2, pp. 1–9, 2021, doi: 10.33884/cbis.v9i2.3835.
S. Sumirat and Y. Ramdhani, “Implementasi Algoritma Fp-Growth Untuk Penentuan Paket Hemat Produk Skincare,” E-Prosiding Tek. Inform., vol. 2, no. 2, pp. 191–199, 2021.
S. Hasuna, W. Hastomo, E. Sestri, and N. Kalbuana, “Implementasi Association Rule & Frequent Pattern Growth Untuk Penentuan Sistem Rekomendasi Keputusan Pembelian,” Pros. SeNTIK, vol. 4, no. 1, pp. 175–179, 2020.
Y. A. Ünvan, “Market basket analysis with association rules,” Commun. Stat. - Theory Methods, vol. 50, no. 7, pp. 1615–1628, 2021, doi: 10.1080/03610926.2020.1716255.
M. Rizky, A. A. Ridha, and K. Prihandani, “Penentuan Paket Promosi Pakaian PT. D&C Production dengan Menggunakan Algoritma FP-Growth,” Edumatic J. Pendidik. Inform., vol. 5, no. 2, pp. 177–186, 2021, doi: 10.29408/edumatic.v5i2.3714.
S. Suhada, D. Ratag, D. Wintana, and T. Hidayatulloh, “Penerapan Algoritma FP-Growth Untuk Menentukan Pola Pembelian Konsumen Pada AHASS Cibadak,” vol. 8, no. 2, pp. 118–126, 2020.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma FP-Growth untuk Menentukan Strategi Promosi Berdasarkan Waktu dan Pembelian Produk
Pages: 104−113
Copyright (c) 2023 Anandeanivha Wilrose, M Afdal, Siti Monalisa, Medyantiwi Rahmawita Munzir

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).