Klasifikasi Penerima Bantuan Beras Miskin Menggunakan Algoritma K-NN, NBC dan C4.5
Abstract
One of the tasks of the Dumai City Social Service is to provide poor rice assistance to people in need. The problem that often occurs in the distribution of rice to the poor is that the target recipients of poor rice often occur. In overcoming the existing problems, this research has carried out classification models using the K-Nearest Neighbor (K-NN) algorithm, Naïve Bayes Classifier (NBC), and C4.5 Algorithm. Based on the experimental results, it was found that the best classification model was produced by the K-NN Algorithm with a value of K equal to 21. Besides that, the C4.5 algorithm succeeded in making a decision tree for the classification model with the lowest complexity because it succeeded in reducing the number of attributes from 33 to 5 attributes. The decision tree can be used as material for consideration to the Social Service in making decisions on Raskin beneficiaries.
Downloads
References
N. Nurahman and S.- Aminah, “KLASIFIKASI PENERIMA BANTUAN SOSIAL DI DESA BATUAH MENGGUNAKAN METODE ALGORITMA C4.5,” Jurnal Teknik Informasi dan Komputer (Tekinkom), vol. 5, no. 2, p. 271, Dec. 2022, doi: 10.37600/tekinkom.v5i2.516.
R. K. Amru Alba, “Kebijakan-pemberian-bantuan-sosial-bagi-keluarga-miskin,” UNIMAL PRESS, 2019.
C. Fadlan, S. Ningsih, and A. Perdana Windarto, “PENERAPAN METODE NAÏVE BAYES DALAM KLASIFIKASI KELAYAKAN KELUARGA PENERIMA BERAS RASTRA,” 2018. doi: doi.org/10.59637/jsti.v17i2.152.
R. Meivera, M. Hutabarat, J. Waruwu, R. Meivera Siburian, and D. J. Waruwu, “SISTEM PENDUKUNG KEPUTUSAN UNTUK MENENTUKAN PENERIMAAN BERAS MISKIN (RASKIN) DENGAN METODE WEIGHTED PRODUCT (STUDI KASUS DESA HILIWETO KECAMATAN ONOHAZUMBA),” 2022. doi: doi.org/10.59637/jsti.v17i2.152.
TNP2K, “PROGRAM BANTUAN PEMERINTAH UNTUK INDIVIDU, KELUARGA, DAN KELOMPOK TIDAK MAMPU Menuju Bantuan Sosial Terintegrasi,” Cetakan Pertama, 2018.
Pratama, Dimas Eqy, Selnia M. Lamata, and Dewi Halimatuz Zahro. "PROGRAM RASKIN SEBAGAI DAKWAH PEMBERDAYAAN MASYARAKAT PROLETAR DI INDONESIA." Dakwatun: Jurnal Manajemen Dakwah 1, no. 2 (2022): 106-117, doi.org/10.58194/jdmd.v1i2.121.
F. Yumono, D. Efytra Yuliana, and R. N. Sarbini, “HISTOGRAM CITRA JENIS BERAS DENGAN MENYERTAKAN KERTAS PUTIH UNTUK IDENTIFIKASI AWAL JENIS BERAS DENGAN MENGGUNAKAN JARINGAN SYARAF TIRUAN,” Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 3, no. 2, pp. 129–137, 2022, doi.org/10.33365/jatika.v3i1.189.
Mustofa, Kharomatun Nuruhul, Eka Suswaini, and Nurfalinda Nurfalinda. "KLASIFIKASI PENERIMA BANTUAN RASTRA MENGGUNAKAN METODE NAIVE BAYES." Student Online Journal (SOJ) UMRAH-Teknik 2, no. 1 (2021): 175-185.
P. Pendidikan, P. dan Jumlah Tanggungan Terhadap Kemiskinan di Desa Aek Bolon Julu, D. Siahaan, and R. Linda Sari, “Employment and Number of Dependents on Poverty in Aek Bolon Julu Village,” 2023, doi: 10.32734/lwsa.v6i1.1683.
Sandi, S. A., & Novianto, Y. (2023). Klasifikasi Kelayakan Keluarga Penerima Bantuan Langsung Tunai Menggunakan Gain Ratio Dan Naïve Bayes. Jurnal Informatika Dan Rekayasa Komputer (Jakakom), 3(1), 433-442, doi.org/10.33998/jakakom.2023.3.1.794.
Q. Iman and A. W. Wijayanto, “Klasifikasi Rumah Tangga Penerima Beras Miskin (Raskin)/Beras Sejahtera (Rastra) Di Provinsi Jawa Barat Tahun 2017 Dengan Metode Random Forest Dan Support Vector Machine,” JUSTIN (Jurnal Sistem dan Teknologi Informasi), vol. 9, no. 2, pp. 178–184, 2021.
Supriyadi, Andy Supriyadi Andy. "Perbandingan Algoritma Naive Bayes dan Decision Tree (C4. 5) dalam Klasifikasi Dosen Berprestasi." Generation Journal 7, no. 1 (2023), doi.org/10.29407/gj.v7i1.19797.
A. Tangkelayuk and E. Mailoa, “Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes Dan Decision Tree,” vol. 9, no. 2, pp. 1109–1119, 2022, doi.org/10.35957/jatisi.v9i2.2048.
M. Sadikin, R. Rosnelly, R. Roslina, and ..., “Penerapan Data Mining Pada Penerimaan Dosen Tetap Menggunakan Metode Naive Bayes Classifier dan C4. 5,” Jurnal Media …, vol. 4, pp. 1100–1109, 2020, doi: 10.30865/mib.v4i4.2434.
Ridho, Rashid, and Hendra Hendra. "Klasifikasi Diagnosis Penyakit Covid-19 Menggunakan Metode Decision Tree." JUST IT: Jurnal Sistem Informasi, Teknologi Informasi dan Komputer 11, no. 3 (2022),doi.org/10.24853/justit.11.3.%25p.
Hidayatulloh, Taufik, Ardi Winardi, Lestari Yusuf, Satia Suhada, and Saeful Bahri. "Feasibility Test Of Poor Rice Recipients In Bencoy Sukabumi Village Using Naive Bayes." Jurnal Pilar Nusa Mandiri 17, no. 1 (2021): 93-98, doi.org/10.33480/pilar.v17i1.2227.
N. Nurahman and S.- Aminah, “KLASIFIKASI PENERIMA BANTUAN SOSIAL DI DESA BATUAH MENGGUNAKAN METODE ALGORITMA C4.5,” Jurnal Teknik Informasi dan Komputer (Tekinkom), vol. 5, no. 2, p. 271, Dec. 2022, doi: 10.37600/tekinkom.v5i2.516.
R. Tuntun, K. Kusrini, and K. Kusnawi, “Analisis Perbandingan Kinerja Algoritma Klasifikasi dengan Menggunakan Metode K-Fold Cross Validation,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 4, p. 2111, Oct. 2022, doi: 10.30865/mib.v6i4.4681.
Q. A’yuniyah et al., “Implementasi Algoritma Naïve Bayes Classifier (NBC) untuk Klasifikasi Penyakit Ginjal Kronik,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 1, p. 72, Sep. 2022, doi: 10.30865/json.v4i1.4781.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” Jurnal Sains Komputer & Informatika (J-Sakti), vol. 5, no. 2, pp. 697–711, 2021, doi.org/10.30645/j-sakti.v5i2.369.
K. P. Siwilopo and H. Marcos, “MEMBANDINGKAN KLASIFIKASI PADA BUAH JERUK MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK DAN K-NEAREST NEIGHBOR,” KOMPUTA : Jurnal Ilmiah Komputer dan Informatika, vol. 12, no. 1, 2023, doi. 10.34010/KOMPUTA.V12I1.9068.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Penerima Bantuan Beras Miskin Menggunakan Algoritma K-NN, NBC dan C4.5
Pages: 336−344
Copyright (c) 2023 Andani Putri Pristiawati, Inggih Permana, Zarnelly, Fitriani Muttakin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).





















