Analisis Sentimen Traveloka Berdasarkan Ulasan Google Play Store Menggunakan Algoritma Support Vector Machine dan Random Forest
Abstract
The internet has become a key element in supporting technological and information advances in various sectors of human activity. In the trade and tourism sector, the Traveloka application is the favorite choice of Indonesian people. Reviews or reviews from users play an important role for the Company to understand the level of customer satisfaction. However, currently there are several users who give high ratings but contain negative reviews. Based on these problems, this research aims to understand more deeply user opinions, so that they can be used to improve services and features as well as test and compare the accuracy of the two algorithms in classifying user sentiment. In this research, the Support Vector Machine and Random Forest classification methods were used. The research results show that Random Forest has superior and stable performance compared to SVM, with higher average accuracy for most features, such as Traveloka (71% & 67%) and Airplanes (75% & 74%). Evaluation with k-fold cross validation supports these results, with higher average Random Forest accuracy on features such as Traveloka (70% & 66%) and Airplanes (75% & 74%).
Downloads
References
F. Giovinda, H. Ridwan, and Pusporini, “Analisis Pengaruh Harga, Promosi dan Gaya Hidup Terhadap Keputusan Pembelian Pada Tiket. com,” Bus. Manag. Econ. Account. Natl. Semin., vol. 1, no. 1, pp. 1059–1076, 2020.
C. B. Prabowo, T. I. Hermanto, and I. Ma’ruf, “Implementasi Algoritma Support Vector Machine dan Randoom Forest Terhadap Analisis Sentimen Masyarakat Dalam Penggunaan Aplikasi Tiket.com, Traveloka, dan Agoda Pada Google Playstore,” Smart Comp Jurnalnya Orang Pint. Komput., vol. 13, no. 1, pp. 57–65, 2024, doi: 10.30591/smartcomp.v13i1.5378.
A. Z. Amrullah, A. Sofyan Anas, and M. A. J. Hidayat, “Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square,” Jurnal, vol. 2, no. 1, pp. 40–44, 2020, doi: 10.30812/bite.v2i1.804.
M. Choirunnisa, N. Hidayat, and E. Santoso, “Implementasi Metode Support Vector Machine Dengan Query Expansion Pada Klasifikasi Review Di Situs Traveloka,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 5, pp. 1860–1865, 2021.
H. Huang, A. A. Zavareh, and M. B. Mustafa, “Sentiment Analysis in E-Commerce Platforms: A Review of Current Techniques and Future Directions,” IEEE Access, vol. 11, no. July, pp. 90367–90382, 2023, doi: 10.1109/ACCESS.2023.3307308.
F. Bei and S. Sudin, “Analisis Sentimen Aplikasi Tiket Online Di Play Store Menggunakan Metode Support Vector Machine (Svm),” Sismatik, vol. 01, no. 01, pp. 91–97, 2021.
M. N. Muttaqin and I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor,” UNNES J. Math., vol. 10, no. 2, pp. 22–27, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm
C. G. Indrayanto, D. E. Ratnawati, and B. Rahayudi, “Analisis Sentimen Data Ulasan Pengguna Aplikasi MyPertamina di Indonesia pada Google Play Store menggunakan Metode Random Forest,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, pp. 1131–1139, 2023, [Online]. Available: http://j-ptiik.ub.ac.id
B. Budiman, Z. Silvana Anggraeni, C. Habibi, and N. Alamsyah, “Analisis Sentimen Publik pada Media Sosial Twitter Terhadap Tiket.com Menggunakan Algoritma Klasifikasi,” J. Inform., vol. 11, no. 1, pp. 1–10, 2024, doi: 10.31294/inf.v11i1.17988.
E. Fitri, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine,” J. Transform., vol. 18, no. 1, p. 71, 2020, doi: 10.26623/transformatika.v18i1.2317.
M. R. Adrian, M. P. Putra, M. H. Rafialdy, and N. A. Rakhmawati, “Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB,” J. Inform. Upgris, vol. 7, no. 1, pp. 36–40, 2021.
M. Samantri and Afiyati, “Perbandingan Algoritma Support Vector Machine dan Random Forest untuk Analisis Sentimen Terhadap Kebijakan Pemerintah Indonesia Terkait Kenaikan Harga BBM Tahun 2022,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 8, no. 1, pp. 1–9, 2024, doi: 10.35870/jtik.v8i1.1202.
B. Hakim, “Analisa Sentimen Data Text Preprocessing Pada Data Mining Dengan Menggunakan Machine Learning,” JBASE - J. Bus. Audit Inf. Syst., vol. 4, no. 2, pp. 16–22, 2021, doi: 10.30813/jbase.v4i2.3000.
A. A. Syam, G. H. M, A. Salim, D. F. Surianto, and M. F. B, “Analisis teknik preprocessing pada sentimen masyarakat terkait konflik israel-palestina menggunakan support vector machine,” vol. 9, no. 3, pp. 1464–1472, 2024.
B. Bayu Baskoro et al., “Analisis Sentimen Pelanggan Hotel di Purwokerto Menggunakan Metode Random Forest dan TF-IDF (Studi Kasus: Ulasan Pelanggan Pada Situs TRIPADVISOR),” J. Informatics Inf. Syst. Softw. Eng. Appl. (INISTA), , vol. Volume 3 N, no. 2, pp. 21–029, 2021, doi: 10.20895/INISTA.V3.
V. W. D. Thomas and F. Rumaisa, “Analisis Sentimen Ulasan Hotel Bahasa Indonesia Menggunakan Support Vector Machine dan TF-IDF,” J. Media Inform. Budidarma, vol. 6, no. 3, p. 1767, 2022, doi: 10.30865/mib.v6i3.4218.
N. Fitriyah, B. Warsito, and D. A. I. Maruddani, “Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (Svm,” J. Gaussian, vol. 9, no. 3, pp. 376–390, 2020, doi: 10.14710/j.gauss.v9i3.28932.
D. S. Utami and A. Erfina, “Analisis Sentimen Pinjaman Online di Twitter Menggunakan Algoritma Support Vector Machine (SVM),” SISMATIK (Seminar Nas. Sist. Inf. dan Manaj. Inform., vol. 1, no. 1, pp. 299–305, 2021.
F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” … Teknol. Inf. dan …, vol. 6, no. 9, pp. 4305–4313, 2022,
H. Chyntia Morama, D. E. Ratnawati, and I. Arwani, “Analisis Sentimen berbasis Aspek terhadap Ulasan Hotel Tentrem Yogyakarta menggunakan Algoritma Random Forest Classifier,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 4, pp. 1702–1708, 2022,
U. Muhammadiyah Jember, M. Izunnahdi, G. Aburrahman, and A. Eko Wardoyo, “Sentimen Analisis Pada Data Ulasan Aplikasi KAI Access Di Google PlayStore Menggunakan Metode Multinomial Naive Bayes,” J. Smart Teknol., vol. 4, no. 2, pp. 2774–1702, 2023, [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JST
A. P. Natasuwarna, “Seleksi Fitur Support Vector Machine pada Analisis Sentimen Keberlanjutan Pembelajaran Daring,” Techno.Com, vol. 19, no. 4, pp. 437–448, 2020, doi: 10.33633/tc.v19i4.4044.
B. Ramadhani and R. R. Suryono, “Komparasi Algoritma Naïve Bayes dan Logistic Regression Untuk Analisis Sentimen Metaverse,” J. Media Inform. Budidarma, vol. 8, no. 2, p. 714, 2024, doi: 10.30865/mib.v8i2.7458.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Traveloka Berdasarkan Ulasan Google Play Store Menggunakan Algoritma Support Vector Machine dan Random Forest
Pages: 1709-1716
Copyright (c) 2024 Siti Rohimah, M Afdal, Mustakim Mustakim, Rice Novita

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).