Analisis Sentimen Masyarakat Terhadap Penghapusan Honorer Berdasarkan Opini Dari Twitter Menggunakan Naïve Bayes Classifier


  • Dwi Ratna Andriyani * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • M Afdal Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Siti Monalisa Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Honorary; K-fold Cross Validation; NBC; Text Mining; Twitter; Sentimen Analysis

Abstract

The removal of honorees is currently a hot topic throughout Indonesia. Sharing how honorary personnel do so that the honorary removal policy is not implemented. Most honorary personnel have served for several years, but the government has issued a circular on the abolition of honorees. Various pros and cons of society regarding the abolition of honorees, such as honorary workers can lose their jobs, not get income, and unemployment is increasing. The purpose of the study is that the government can provide strategies that must be carried out in the event of the removal of honorees, such as appointing all honorees to become Civil Servants or Government Employees with Work Agreements. So the removal of the honoree became one of the trending topics on Twitter social media in 2022. From the results of the analysis conducted, public opinion that uses Twitter is very influential for honorary workers by grouping opinions into three categories, namely positive opinions, neutral opinions, and negative opinions. So the study with text mining used the Naïve Bayes Classifier algorithm with data from Twitter tweets from January 2022 to December 2022 with 2,705 data. The results of this study obtained accuracy with 10 K-fold Cross Validation on K-10, which was 73.01%. And it was found that sentiment polarity against the removal of honorees on positive class sentiment by 10% against agreeing to remove honorees with 285 data tweets, neutral class sentiment by 67% against agreeing and disagreeing with the removal of honorees with 1,801 data tweets, and negative class sentiment by 23% against disagreeing with the removal of honorees with 619 data tweets

Downloads

Download data is not yet available.

References

Y. H. Pranyoto and S. Geli, “Pengaruh Penggunaan Media Sosial Sebagai Media Pembelajaran Terhadap Hasil Belajar Kognitif Mahasiswa Sekolah Tinggi Katolik Santo Yakobus Marauke,” Jumpa, vol. VIII, no. 1, pp. 32–33, 2020.

M. A. Harahap and S. Adeni, “Tren Penggunaan Media Sosial Selama Pandemi Di Indonesia,” J. Prof. FIS UNIVED, vol. 7, no. 2, pp. 13–23, 2020.

F. A. Girnanfa and A. Susilo, “Studi Dramaturgi Pengelolaan Kesan Melalui Twitter Sebagai Sarana Eksistensi Diri Mahasiswa di Jakarta,” J. New Media Commun., vol. 1, no. 1, pp. 58–73, 2022, doi: 10.55985/jnmc.v1i1.2.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,” J. TeknoKompak, vol. 15, no. 1, pp. 131–145, 2021, doi: https://doi.org/10.33365/jtk.v15i1.744.

Eka Viandari, “Dinas Pendidikan Provinsi se-Indonesia,” Quipper Blog, 2021. https://www.quipper.com/id/blog/info-guru/dinas-pendidikan-provinsi-se-indonesia/ (accessed Apr. 12, 2023).

S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” J. Media Inform. Budidarma, vol. 5, no. 2, p. 406, 2021, doi: 10.30865/mib.v5i2.2835.

I. Susianti et al., “Prosiding Seminar Edusainstech FMIPA UNIMUS 2020 ISBN : 978-602-5614-35-4, "Analisis Sentimen Pada Twitter Terkait New Normal," Prosiding Seminar Edusainstech FMIPA UNIMUS 2020 ISBN : 978-602-5614-35-4,” pp. 354–363, 2020.

G. E. I. Kambey and Dkk, “Penerapan Clustering pada Aplikasi Pendeteksi Kemiripan Dokumen Teks Bahasa Indonesia,” Penerapan Clust. pada Apl. Pendeteksi Kemiripan Dok. teks Bhs. Indones., vol. 15, no. 2, pp. 75–82, 2020. https://doi.org/10.35793/jti.15.2.2020.28907.

S. N. Mandiri, “Analisis Sentimen Terhadap Penerapan Sistem Plat Nomor Ganjil / Genap Pada Twitter Dengan Metode Klasifikasi Naïve Bayes,” vol. 3, no. 1, pp. 94–99, 2019.

N. Yudistira, “Analisis Sentimen Penghapusan Ujian Nasional pada Twitter menggunakan Document Frequency Difference dan Multinomial Na ï ve Bayes,” J. Pengemb. Teknol. Inf. dan Ilmu …, vol. 5, no. 3, pp. 876–883, 2021, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/8659/3981

S. Juanita, “Analisis Sentimen Persepsi Masyarakat Terhadap Pemilu 2019 Pada Media Sosial Twitter Menggunakan Naive Bayes,” J. Media Inform. Budidarma, vol. 4, no. 3, p. 552, 2020, doi: 10.30865/mib.v4i3.2140.

A. Miftahusalam, A. F. Nuraini, A. A. Khoirunisa, and H. Pratiwi, “Perbandingan Algoritma Random Forest, Naïve Bayes, dan Support Vector Machine Pada Analisis Sentimen Twitter Mengenai Opini Masyarakat Terhadap Penghapusan Tenaga Honorer,” Semin. Nas. Off. Stat., vol. 2022, no. 1, pp. 563–572, 2022, doi: 10.34123/semnasoffstat.v2022i1.1410.

S. Lestari and S. Saepudin, “Analisis Sentimen Vaksin Sinovac Pada Twitter Menggunakan Algoritma Naive Bayes,” SISMATIK (Seminar Nas. Sist. Inf. dan Manaj. Inform., vol. 1, no. 1, pp. 163–170, 2021.

N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and S. Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 293, 2020, doi: 10.24114/cess.v5i2.18186.

P. Nandwani and R. Verma, “A review on sentiment analysis and emotion detection from text,” Soc. Netw. Anal. Min., vol. 11, no. 1, pp. 1–19, 2021, doi: 10.1007/s13278-021-00776-6.

V. A. Fitri, R. Andreswari, and M. A. Hasibuan, “Sentiment analysis of social media Twitter with case of Anti-LGBT campaign in Indonesia using Naïve Bayes, decision tree, and random forest algorithm,” Procedia Comput. Sci., vol. 161, pp. 765–772, 2019, doi: 10.1016/j.procs.2019.11.181.

N. L. P. C. Savitri, R. A. Rahman, R. Venyutzky, and N. A. Rakhmawati, “Analisis Klasifikasi Sentimen Terhadap Sekolah Daring pada Twitter Menggunakan Supervised Machine Learning,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, pp. 47–58, 2021, doi: 10.28932/jutisi.v7i1.3216.

A. Yahyadi and F. Latifah, “Analisis Sentimen Twitter Terhadap Kebijakan PPKM di Tengah Pandemi COVID-19 Menggunakan Mode LSTM,” J. Inf. Syst. Applied, Manag. Account. Res., vol. 6, no. 2, pp. 464–471, 2022, doi: 10.52362/jisamar.v6i2.791.

M. W. Pertiwi, “Analisis Sentimen Opini Publik Mengenai Sarana dan Transportasi Mudik Tahun 2019 Pada Twitter Menggunakan Algoritma Naïve Bayes, Neural Network, K-NN dan SVM,” Inti Nusa Mandiri, vol. 14, no. 1, pp. 27–32, 2019.

C. Prianto, N. H. Harani, and I. Firmansyah, “Analisis Sentimen Terhadap Kandidat Presiden Republik Indonesia Pada Pemilu 2019 di Media Sosial Twitter,” J. Media Inform. Budidarma, vol. 3, no. 4, p. 405, 2019, doi: 10.30865/mib.v3i4.1549.

S. Reddy et al., “Use and validation of text mining and cluster algorithms to derive insights from Corona Virus Disease-2019 (COVID-19) medical literature,” Comput. Methods Programs Biomed. Updat., vol. 1, no. April, p. 100010, 2021, doi: 10.1016/j.cmpbup.2021.100010.

T. Sariwulan, I. Agung, U. Sudrajat, and G. Atmadiredja, “The influence of job expectation, job satisfaction, and government policy towards the work stress, job enthusiasm and continuance commitment of the honorarium teacher,” Cakrawala Pendidik., vol. 38, no. 2, pp. 305–319, 2019, doi: 10.21831/cp.v38i2.24380.

S. Fitria and S. R. Nio, “Kepuasan Kerja Dan Loyalitas Kerja Pada Guru Honorer Sma Swasta Bukittinggi,” Proyeksi, vol. 15, no. 2, p. 131, 2020, doi: 10.30659/jp.15.2.131-140.

kepegawaian unmul, “Surat Edaran Mempan RB No. B/185/M.SM.02.03/2022 Tentang Status Kepegawaian Di Lingkungan Instansi Pemerintah Pusat Dan Pemerintah Daerah,” SIDAK, 2022. https://kepegawaian.unmul.ac.id/post/surat-edaran-mempan-rb-no-b-185-m-sm-02-03-2022-tentang-status-kepegawaian-di-lingkungan-instansi-pemerintah-pusat (accessed Apr. 02, 2023).

I. Kurniawan and A. Susanto, “Implementasi Metode K-Means dan Naïve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden ( Pilpres ) 2019,” pp. 1–10, 2019, doi: 10.30864/eksplora.v9i1.237.

F. Syarifuddin, M. Misdram, A. A. Widodo, P. S. Informatika, and U. M. Pasuruan, “Klasifikasi Data Set Virus Corona Menggunakan Metode Naïve Bayes Classifier,” J. SPIRIT, vol. 12, no. 2, pp. 46–52, 2020, doi: http://dx.doi.org/10.53567/spirit.v12i2.184.

A. Nugroho, R. Hidayatillah, S. Sumpeno, and M. H. Purnomo, “Klasifikasi Interaksi Kampanye di Media Sosial Menggunakan Naïve Bayes Kernel Estimator,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 2, p. 107, 2019, doi: 10.22146/jnteti.v8i2.499.

M. P. Simatupang and D. P. Utomo, “Analisa Testimonial Dengan Menggunakan Algoritma Text Mining Dan Term Frequency- Inverse Document Frequence (Tf-Idf) Pada Toko Allmeeart,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 808–814, 2019, doi: 10.30865/komik.v3i1.1697.

I. Widaningrum, D. Mustikasari, R. Arifin, S. L. Tsaqila, and D. Fatmawati, “Algoritma Term Frequency – Inverse Document Frequency ( TF-IDF ) dan K-Means Clustering Untuk Menentukan Kategori Dokumen,” J. SISFOTEK., vol. 6, no. 1, pp. 145–149, 2022.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Masyarakat Terhadap Penghapusan Honorer Berdasarkan Opini Dari Twitter Menggunakan Naïve Bayes Classifier

Dimensions Badge
Article History
Submitted: 2023-05-29
Published: 2023-06-28
Abstract View: 363 times
PDF Download: 404 times
How to Cite
Andriyani, D. R., Afdal, M., & Monalisa, S. (2023). Analisis Sentimen Masyarakat Terhadap Penghapusan Honorer Berdasarkan Opini Dari Twitter Menggunakan Naïve Bayes Classifier. Building of Informatics, Technology and Science (BITS), 5(1), 49−58. https://doi.org/10.47065/bits.v5i1.3541
Issue
Section
Articles

Most read articles by the same author(s)

1 2 > >>