Analisis Sentimen Terhadap Publisher Rights Dalam Mengunggah Konten Digital Menggunakan Ensemble Learning
Abstract
Digital content encompasses various forms of information, ranging from informative text to interactive videos. YouTube, as one of the most popular social media platforms, is widely used in Indonesia. However, the proposed Publisher Rights Bill or the Draft Presidential Regulation on the Responsibility of Digital Platforms for Quality Journalism has sparked debate. In the context of YouTube, this regulation has the potential to threaten content creators. Negative reactions from various parties highlight concerns about the impact of this regulation. Therefore, this study aims to analyze sentiment towards Publisher Rights in the uploading of digital content using an ensemble learning approach. The analysis found that 60% of the sentiment was negative, reflecting concerns about copyright, royalties, or ethical issues. A total of 32% of the sentiment was neutral, indicating uncertainty or a lack of information, and only 8% of the sentiment was positive, supporting the policy of protecting publisher rights and recognizing their value and contributions. This study employed ensemble techniques based on Bagging (Random Forest) and Boosting (Adaboost), where the accuracy of Random Forest was higher at 83% compared to Adaboost's accuracy of 68%.
Downloads
References
O. M. Hylland, H. Stavrum, M. T. Heian, B. Kleppe, and K. P. Miland, “Creating careers in the kingdom of content. The platform-dependence and platform-ambivalence of digital cultural labour in Norway,” Poetics, vol. 103, no. February, p. 101885, 2024, doi: 10.1016/j.poetic.2024.101885.
D. Tiwari, B. Nagpal, B. S. Bhati, A. Mishra, and M. Kumar, A systematic review of social network sentiment analysis with comparative study of ensemble-based techniques, vol. 56, no. 11. Springer Netherlands, 2023. doi: 10.1007/s10462-023-10472-w.
A. Z. Yonatan, “10 Negara dengan Pengguna Jenis Media Sosial Terbanyak 2023 - GoodStats Data,” GoodStats, 2023.
A. Z. Yonatan, “Menilik Pengguna Media Sosial Indonesia 2017-2026 - GoodStats Data,” GoodStats, 2023.
E. F. Setiadi, A. Azmi, and J. Indrawadi, “Youtube Sebagai Sumber Belajar Generasi Milenial,” vol. 2, no. 4, pp. 313–323, 2019.
B. S. Chai, T. Chae, and A. L. Huang, “Evaluation of Educational YouTube Videos for Distal Radius Fracture Treatment,” J. Hand Surg. Glob. Online, pp. 1–6, 2024, doi: 10.1016/j.jhsg.2024.02.009.
J. Rochotte, A. Sanap, V. Silenzio, and V. K. Singh, “Predicting anxiety using Google and Youtube digital traces,” Emerg. Trends Drugs, Addict. Heal., vol. 4, no. February, p. 100145, 2024, doi: 10.1016/j.etdah.2024.100145.
M. Jamil Reza, “Persepsi Mahasiswa terhadap Penggunaan Youtube sebagai Media Konten Video Kreatif,” J. Komun. dan Organ. (J-KO, vol. 3, pp. 39–46, 2021.
H. Ulya, “KOMODIFIKASI PEKERJA PADA YOUTUBER PEMULA DAN UNDERRATED (Studi Kasus YouTube Indonesia),” Interak. J. Ilmu Komun., vol. 8, no. 2, p. 1, 2019, doi: 10.14710/interaksi.8.2.1-12.
R. E. Sakti, “Rancangan Perpres Jurnalisme Berkualitas dan Pengalaman Negara Lain,” kompas.id, 2023. https://www.kompas.id/baca/riset/2023/08/19/rancangan-perpres-jurnalisme-berkualitas-dan-pengalaman-negara-lain
L. A. Ziyad, “Kiamat Kreator Konten dibalik PerPres Jurnalisme Berkualitas.pdf,” ERA.id, 2023.
M. Browning, “Sebuah rancangan peraturan berpotensi mengancam masa depan media di Indonesia,” indonesia.googleblog, 2023. https://indonesia.googleblog.com/2023/07/rancangan-peraturan-untuk-masa-depan-media-di-Indonesia.html
T. K. Tran and T. T. Phan, “Capturing Contextual Factors in Sentiment Classification: An Ensemble Approach,” IEEE Access, vol. 8, pp. 116856–116865, 2020, doi: 10.1109/ACCESS.2020.3004180.
A. Mustofa and R. Novita, “KLASIFIKASI SENTIMEN MASYARAKAT TERHADAP PEMBERLAKUAN PEMBATASAN KEGIATAN MASYARAKAT MENGGUNAKAN TEXT MINING PADA TWITTER,” vol. 99, no. 99, pp. 1–10, 2022, doi: 10.47065/bits.v9i9.999.
Z. Grotenhuis, P. J. Mosteiro, and A. M. Leeuwenberg, “Modest performance of text mining to extract health outcomes may be almost sufficient for high-quality prognostic model development,” Comput. Biol. Med., vol. 170, no. July 2023, p. 108014, 2024, doi: 10.1016/j.compbiomed.2024.108014.
C. J. Varshney, A. Sharma, and D. P. Yadav, “Sentiment analysis using ensemble classification technique,” 2020 IEEE Students’ Conf. Eng. Syst. SCES 2020, pp. 12–17, 2020, doi: 10.1109/SCES50439.2020.9236754.
S. González, S. García, J. Del Ser, L. Rokach, and F. Herrera, “A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities,” Inf. Fusion, vol. 64, no. July, pp. 205–237, 2020, doi: 10.1016/j.inffus.2020.07.007.
I. D. Mienye, Y. Sun, and S. Member, “A Survey of Ensemble Learning : Concepts , Algorithms , Applications , and Prospects,” IEEE Access, vol. 10, no. August, pp. 99129–99149, 2022, doi: 10.1109/ACCESS.2022.3207287.
M. Kabir, M. M. J. Kabir, S. Xu, and B. Badhon, “An empirical research on sentiment analysis using machine learning approaches,” Int. J. Comput. Appl., vol. 43, no. 10, pp. 1011–1019, 2021, doi: 10.1080/1206212X.2019.1643584.
A. Rahmadeyan, Mustakim, I. Ahmad, A. D. Alexander, and A. Rahman, “Phishing Website Detection with Ensemble Learning Approach Using Artificial Neural Network and AdaBoost,” 2023 Int. Conf. Inf. Technol. Res. Innov. ICITRI 2023, pp. 162–166, 2023, doi: 10.1109/ICITRI59340.2023.10249799.
M. S. Md Suhaimin, M. H. Ahmad Hijazi, E. G. Moung, P. N. E. Nohuddin, S. Chua, and F. Coenen, “Social media sentiment analysis and opinion mining in public security: Taxonomy, trend analysis, issues and future directions,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 9, p. 101776, 2023, doi: 10.1016/j.jksuci.2023.101776.
M. K. Iqbal, K. Abid, S. u din Ayubi, N. Aslam, and others, “Omicron Tweet Sentiment Analysis Using Ensemble Learning,” J. Comput. Biomed. Informatics, vol. 4, no. 02, pp. 160–171, 2023.
M. Qorib, T. Oladunni, M. Denis, E. Ososanya, and P. Cotae, “Covid-19 vaccine hesitancy: Text mining, sentiment analysis and machine learning on COVID-19 vaccination Twitter dataset,” Expert Syst. Appl., vol. 212, no. August 2022, p. 118715, 2023, doi: 10.1016/j.eswa.2022.118715.
C. A. Agustina and R. Novita, “ScienceDirect The Implementation of TF-IDF and Word2Vec on Booster Vaccine Sentiment Analysis Using Support Vector Machine Algorithm,” Procedia Comput. Sci., vol. 234, pp. 156–163, 2024, doi: 10.1016/j.procs.2024.02.162.
J. Kazmaier and J. H. van Vuuren, “The power of ensemble learning in sentiment analysis,” Expert Syst. Appl., vol. 187, no. June 2021, p. 115819, 2022, doi: 10.1016/j.eswa.2021.115819.
V. Ahuja and M. Shakeel, “Twitter Presence of Jet Airways-Deriving Customer Insights Using Netnography and Wordclouds,” Procedia Comput. Sci., vol. 122, pp. 17–24, 2017, doi: 10.1016/j.procs.2017.11.336.
F. Bima, “Exploratory Data Analysis of Indonesian Presidential Election Candidate Campaign in 2019 on Twitter,” Indones. J. Artif. Intell. Data Min., vol. 7, no. 2, pp. 229–240, 2024.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Terhadap Publisher Rights Dalam Mengunggah Konten Digital Menggunakan Ensemble Learning
Pages: 64−73
Copyright (c) 2024 Anisa Putri, Mustakim Mustakim, Rice Novita, M Afdal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).





















