Pengelompokkan Perguruan Tinggi di Indonesia Menggunakan Algoritma BIRCH
Abstract
Accreditation is currently the main focus for all universities. Each institution strives to get superior accreditation. The evaluation and assessment process carried out by BAN-PT is based on data reported by universities to PDDikti. This research aims to assist universities in achieving superior accreditation, by providing recommendations regarding the most influential attributes and clustering to find patterns or data structures from PDDikti. This research uses two feature selection methods AHP and Chi-Square are used separately to identify the most influential attributes. The results of each method were used as input features for the clustering process using the BIRCH algorithm. The purpose of this approach is to evaluate the effect of feature selection from both methods on the quality of clustering results. The evaluation is done using the Davies-Bouldin Index (DBI) metric. The results showed that the Lecturer attribute has the highest eigenvalue in AHP which is 0.379, indicating its significant role in accreditation assessment. Meanwhile, the Year of Establishment Decree attribute has the highest Chi-Square value of 290.625 which indicates a strong correlation with accreditation results. In addition, based on the cluster DBI value, it shows that AHP is superior to chi-square, so AHP is considered more effective in this context. With the best Davies Bouldin Index (DBI) value of 0.73603 in cluster 7 with a threshold of 0.05 and a branching factor of 50.
Downloads
References
V. Sukmayadi and A. H. Yahya, “Indonesian Education Landscape and the 21st Century Challenges,” J. Soc. Stud. Educ. Res., vol. 11, no. 4, pp. 219–234, 2020.
E. Ermawati, I. Sriliana, and R. Sriningsih, “Clustering of State Universities in Indonesia Based on Productivity of Scientific Publications Using K-Means and K-Medoids,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 3, pp. 1617–1630, 2023, doi: 10.30598/barekengvol17iss3pp1617-1630.
N. L. P. S. Adnyani, K. E. K. Adnyani, V. Genua, S. Menggo, and I Nyoman Pasek Hadisaputra5, “Grammatical Features in Indonesian English: A Study of Indonesian College Students,” Mimb. Ilmu, vol. 28, no. 2, pp. 318–328, 2023, doi: 10.23887/mi.v28i2.53866.
M. Pratiwi and L. H. Kusumah, “Enhancing the Accreditation of Indonesian Private Universities Through the Integration of EduQual and Accreditation Standards of the BAN-PT,” REID (Research Eval. Educ., vol. 10, no. 2, pp. 227–243, Oct. 2024, doi: 10.21831/reid.v10i2.76406.
M. U. Albab, E. Utami, and D. Ariatmanto, “Comparison of Algorithms for Sentiment Analysis of Operator Satisfaction Level for Increasing Neo Feeder Applications in PDDikti Higher Education LLDIKTI Region VI Semarang Central Java,” Sinkron, vol. 8, no. 4, pp. 2099–2108, 2023, doi: 10.33395/sinkron.v8i4.12907.
P. Williams, “Education Sciences Higher Education,” Educ. Sci., vol. 11, no. 494, pp. 1–15, 2021.
F. Widiputera and I. Agung, “Private University Barriers to World-Class Education: The Case of Indonesia,” J. Res. Educ. Res. Eval., vol. 12, no. 2, pp. 100–112, 2023.
M. C. Nwadiugwu, “Gene-Based Clustering Algorithms: Comparison Between Denclue, Fuzzy-C, and BIRCH,” 2020, SAGE Publications Inc. doi: 10.1177/1177932220909851.
Z. Yan, G. Yang, R. He, H. Yang, H. Ci, and R. Wang, “Ship Trajectory Clustering Based on Trajectory Resampling and Enhanced BIRCH Algorithm,” J. Mar. Sci. Eng., vol. 11, no. 2, Feb. 2023, doi: 10.3390/jmse11020407.
Y. Sasmita, M. Muhsi, and M. Walid, “Klasterisasi Perguruan Tinggi Swasta di Madura Berdasarkan Kinerja Sumber Daya Manusia dan Mahasiswa Menggunakan Metode K-Means Clustering,” J. MEDIA Inform. BUDIDARMA, vol. 6, no. 4, p. 2157, Oct. 2022, doi: 10.30865/mib.v6i4.4431.
M. Arora, S. Agrawal, and R. Patel, “User Location Prediction Using Hybrid BIRCH Clustering and Machine Learning Approach,” J. Integr. Sci. Technol., vol. 12, no. 1, pp. 1–7, 2024.
A. R. Rizalde, H. A. Mubarak, G. Ramadhan, and M. A. Fatan, “Comparison of K-Means, BIRCH and Hierarchical Clustering Algorithms in Clustering OCD Symptom Data,” Public Res. J. Eng. Data Technol. Comput. Sci., vol. 1, no. 2, pp. 102–108, 2024, doi: 10.57152/predatecs.v1i2.1106.
R. Hermawan, M. T. Habibie, D. Sutrisno, A. S. Putra, and N. Aisyah, “Decision Support System for the Best Employee Selection Recommendation Using Ahp (Analytic Hierarchy Process) Method,” Int. J. Educ. Res. Soc. Sci., 2021, [Online]. Available: https://ijersc.org
D. Katarina, A. Nurrohman, and A. Syah Putra, “Decision Support System for the Best Student Selection Recommendation Using Ahp (Analytic Hierarchy Process) Method,” Int. J. Educ. Res. Soc. Sci., 2021, [Online]. Available: https://ijersc.org
K. L. Becker, R. Safa, and K. M. Becker, “High-Priced Textbooks’ Impact on Community College Student Success,” Community Coll. Rev., vol. 51, no. 1, pp. 128–141, Jan. 2023, doi: 10.1177/00915521221125898.
V. Vajrobol, B. B. Gupta, and A. Gaurav, “Mutual Information Based Logistic Regression for Phishing URL Detection,” Cyber Secur. Appl., vol. 2, no. December 2023, 2024, doi: 10.1016/j.csa.2024.100044.
M. Afdal, “Using Analytic Hierarchy Process and Clustering to Identify Key Factors for On-Time Student Graduation,” Control & Automation, Electronics, Robotics, Internet of Things, and Artificial Intelligence (CERIA), IEEE International Conference on, 2024.
M. P. Margareta Amalia, Mustakim, R. Novita, and M. Afdal, “Using Analytic Hierarchy Process and Clustering to Identify Key Factors for On-Time Student Graduation,” Int. Conf. Control Autom. Electron. Robot. Internet Things, Artif. Intell. CERIA 2024, 2024, doi: 10.1109/CERIA64726.2024.10915136.
J. R. Raco et al., “The Dominant Factor of Lecturers’ Research Productivity Using the Ahp: Case Study of Catholic University of De La Salle Manado-Indonesia,” Int. J. Anal. Hierarchy Process, vol. 12, no. 3, pp. 546–564, 2020, doi: 10.13033/IJAHP.V12I3.819.
A. Tunggal and S. Budi, “Pengambilan Keputusan Strategis Pemasaran di Perguruan Tinggi dengan menggunakan Analytics Hierarchy Process (AHP),” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, 2020, doi: 10.28932/jutisi.v6i2.2748.
H. A. Silva, L. E. Quezada, A. M. Oddershede, P. I. Palominos, and C. O’Brien, “A Method for Estimating Students’ Desertion in Educational Institutions Using the Analytic Hierarchy Process,” J. Coll. Student Retent. Res. Theory Pract., vol. 25, no. 1, pp. 101–125, May 2023, doi: 10.1177/1521025120971227.
T. Bariu, X. Chun, and A. Boudouaia, “Influence of Teachers’ Competencies on ICT Implementation in Kenyan Universities,” Educ. Res. Int., vol. 2022, 2022, doi: 10.1155/2022/1370052.
R. Palupi and S. S. Winarsih, “Pengaruh Disiplin Ilmu Terhadap Kecenderungan Mahasiswa Dalam Mengakses Informasi Melalui Media Sosial Menggunakan Metode Chi Square,” J. Teknol. Inf. dan Komun., vol. 9, no. 1, p. 1, 2021, doi: 10.30646/tikomsin.v9i1.536.
F. Ramadhani, M. Zarlis, and S. Suwilo, “Improve BIRCH Algorithm for Big Data Clustering,” IOP Conf. Ser. Mater. Sci. Eng., vol. 725, no. 1, Jan. 2020, doi: 10.1088/1757-899X/725/1/012090.
Y. Hasan, “Analisis Radius pada Algoritma BIRCH Berdampak Terhadap Distribusi dan Kualitas Cluster,” KAKIFIKOM (Kumpulan Artik. Karya Ilm. Fak. Ilmu Komput., vol. 06, no. 02, pp. 140–148, 2024.
X. Li, Y. Zhang, H. Cheng, F. Zhou, and B. Yin, “An Unsupervised Ensemble Clustering Approach for the Analysis of Student Behavioral Patterns,” IEEE Access, vol. 9, pp. 7076–7091, 2021, doi: 10.1109/ACCESS.2021.3049157.
M. Mughnyanti, S. Efendi, and M. Zarlis, “Analysis of determining centroid clustering x-means algorithm with davies-bouldin index evaluation,” IOP Conf. Ser. Mater. Sci. Eng., vol. 725, no. 1, Jan. 2020, doi: 10.1088/1757-899X/725/1/012128.
I. Firman Ashari, E. Dwi Nugroho, R. Baraku, I. N. Yanda, and R. Liwardana, “Analysis of Elbow, Silhouette, Davies-Bouldin, Calinski-Harabasz, and Rand-Index Evaluation on K-Means Algorithm for Classifying Flood-Affected Areas in Jakarta,” J. Appl. Informatics Comput., vol. 7, no. 1, pp. 2548–6861, 2023, [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Pengelompokkan Perguruan Tinggi di Indonesia Menggunakan Algoritma BIRCH
Pages: 84-92
Copyright (c) 2025 Nur Alfa Husna, Mustakim Mustakim, M Afdal, Medyantiwi Rahmawita

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).





















