Dimensional Data Unsupervised Learning Using an Analytic Hierarchy Process in Determining Attributes in the Classification Algorithm


  • Shinta Ayunda Putri * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Mustakim Mustakim Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: BPNN; PNN; K-Means Clustering; Classification

Abstract

Systematic keyword is needed in improving the quality of higher education, one of which is the needed to increase the competence of graduates every year. In increasing student graduation, it is necessary to classify student graduation to find out whether the student is said to be on time (TW) or possibility on time (KTW) using the BPNN and PNN methods. The data used is the Alumni data of the 2013-2020 Information System  study program with 7 criteria use, namely GPA, Total Credits, Number of Repetitive Courses, Taking TA Curse in Semester 7, Procrastination, Self-Confidence, and Discipline. The data obtained is then carried out in the process of sharing training data and testing data using K-Means Clustering with the aim; of getting the best accuracy results. Furthermore, the classification stage using BPNN and PNN resulted in an accuracy of 98% and 95% with learning rate of 0.125 and a spread value of 0.1

Downloads

Download data is not yet available.

References

Akreditasi Program Studi Sarjana Ban-Pt, no. November. 2008.

J. S. Bassi, E. G. Dada, A. A. Hamidu, and M. D. Elijah, “Students Graduation on Time Prediction Model Using Artificial Neural Network,” IOSR J. Comput. Eng., vol. 21, no. 3, pp. 28–35, 2019, doi: 10.9790/0661-2103012835.

A. Noercholis and M. Zainuddin, “Comparative Analysis of 5 Algorithm Based Particle Swarm Optimization (Pso) for Prediction of Graduate Time Graduation,” MATICS J. Ilmu Komput. dan Teknol. Inf., vol. 12, no. 1, pp. 1–9, 2020, doi: 10.18860/mat.v12i1.8216.

Y. Yin, L. Long, and X. Deng, “Dynamic Data Mining of Sensor Data,” IEEE Access, vol. 8, pp. 41637–41648, 2020, doi: 10.1109/ACCESS.2020.2976699.

Mustakim, “Effectiveness of K-means clustering to distribute training data and testing data on K-nearest neighbor classification,” J. Theor. Appl. Inf. Technol., vol. 95, no. 21, pp. 5693–5700, 2017.

G. E. I. Kambey et al., “Penerapan Clustering pada Aplikasi Pendeteksi Kemiripan Dokumen Teks Bahasa Indonesia,” J. Tek. Inform., vol. 15, no. 2, pp. 75–82, 2020.

C. WU, H. JIANG, and P. WANG, “Education quality detection method based on the probabilistic neural network algorithm,” Diagnostyka, vol. 21, no. 4, pp. 79–86, 2020, doi: 10.29354/diag/127194.

E. P. Rohmawan, “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Decision Tree dan Artificial Neural Network,” J. Ilm. MATRIK, vol. 20, no. 1, pp. 21–30, 2018.

N. K. Sari, “Estimasi Kelulusan Tepat Waktu Mahasiswa Menggunakan Algoritma Backpropagation Neural Network (BPNN),” 2018.

Mustakim, N. K. Sari, Jasril, I. Kusumanto, and N. G. I. Reza, “Eigenvalue of analytic hierarchy process as the determinant for class target on classification algorithm,” Indones. J. Electr. Eng. Comput. Sci., vol. 12, no. 3, pp. 1257–1264, 2018, doi: 10.11591/ijeecs.v12.i3.pp1257-1264.

J. M. Haut, M. Paoletti, J. Plaza, and A. Plaza, “Cloud implementation of the K-means algorithm for hyperspectral image analysis,” J. Supercomput., vol. 73, no. 1, pp. 514–529, 2017, doi: 10.1007/s11227-016-1896-3.

R. Gustrianda and D. I. Mulyana, “Penerapan Data Mining Dalam Pemilihan Produk Unggulan dengan Metode Algoritma K-Means Dan K-Medoids,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 27, 2022, doi: 10.30865/mib.v6i1.3294.

S. J. A. Sarosa, F. Utaminingrum, and F. A. Bachtiar, “Breast cancer classification using GLCM and BPNN,” Int. J. Adv. Soft Comput. its Appl., vol. 11, no. 3, pp. 157–172, 2019.

M. Alweshah, L. Rababa, M. H. Ryalat, A. Al Momani, and M. F. Ababneh, “African buffalo algorithm: Training the probabilistic neural network to solve classification problems,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 5, pp. 1808–1818, 2022, doi: 10.1016/j.jksuci.2020.07.004.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Dimensional Data Unsupervised Learning Using an Analytic Hierarchy Process in Determining Attributes in the Classification Algorithm

Dimensions Badge
Article History
Submitted: 2022-06-23
Published: 2022-06-30
Abstract View: 434 times
PDF Download: 425 times
How to Cite
Putri, S., & Mustakim, M. (2022). Dimensional Data Unsupervised Learning Using an Analytic Hierarchy Process in Determining Attributes in the Classification Algorithm. Building of Informatics, Technology and Science (BITS), 4(1), 235−240. https://doi.org/10.47065/bits.v4i1.1752
Issue
Section
Articles

Most read articles by the same author(s)