Penerapan Algoritma K-Means dan K-Medoid untuk Pengelompokkan Data Pasien Covid-19
Abstract
At the end of 2019 in Wuhan, China, a new virus was discovered, that is Corona Virus Disease 2019. This virus causes serious health problems and has been declared as pandemic since March 11, 2020. It has caused death and claimed thousands of lives. This virus spreads very quickly and in various ways such as direct contact with patients, travelers, owners of congenital diseases and many other transmissions. To suppress the spread of this virus, the government has carried out various ways such as social distancing and screening or impromptu swabs in crowded centers. Due to the many types of transmission from this virus, this research was conducted to classify Covid-19 cases in Dumai City. It is hoped that the results of this study can be used as an illustration of the grouping of Covid-19 patient data by applying K-Means and K-Medoid as a grouping algorithm based on the type of transmission, age, gender, health services and district. Based on this research, the K-Means algorithm is more optimal than K-Medoid in classifying Covid-19 patient data, especially in Dumai City. It is proven that the best DBI K-Means value is 0.139 with k = 4
Downloads
References
D. Y. Liliana, H. Maulana, and A. Setiawan, “Data Mining untuk Prediksi Status Pasien Covid-19 dengan Pengklasifikasi Naïve Bayes,” J. Multinetics, vol. 7, no. 1, pp. 48–53, 2021.
F. Adiba, “Penerapan Data Mining dalam Mengklasifikasikan Tingkat Kasus Covid-19 di Sulawesi Selatan Menggunakan Algoritma Naive Bayes,” Indones. J. Fundam. Scienes, vol. 7, no. 1, pp. 18–28, 2021.
G. Moguolo and L. Nanni, “A Critic Evaluation of Methods for COVID-19 Automatic Detection from X-Ray Images,” http://arxix.org/abs/2004.12823, 2020.
N. Nurhalimah, “Upaya Bela Negara Melalui Sosial Distancing Dan Lockdwon,” Sekol. Tinggi Tarb. Insa. Kamil, pp. 1–6, 2020.
Noviyanto, “Penerapan Data Mining dalam Mengelompokkan Jumlah Kematian,” J. Inform. dan Komput., vol. 22, no. 2, pp. 183–188, 2020.
G. D. Rembulan, T. Wijaya, D. Palullungan, K. N. Alfina, and M. Qurthuby, “Kebijakan Pemerintah Mengenai Coronavirus Disease (COVID-19) di Setiap Provinsi di Indonesia Berdasarkan Analisis Klaster,” JIEMS (Journal Ind. Eng. Manag. Syst., vol. 13, no. 2, 2020, doi: 10.30813/jiems.v13i2.2280.
D. D. Darmansah and N. W. Wardani, “Analisis Pesebaran Penularan Virus Corona di Provinsi Jawa Tengah Menggunakan Metode K-Means Clustering,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 1, pp. 105–117, 2021, doi: 10.35957/jatisi.v8i1.590.
Z. Zaharah, G. I. Kirilova, and A. Windarti, “Impact of corona virus outbreak towards teaching and learning activities in Indonesia,” SALAM J. Sos. dan Budaya Syar-i, vol. 7, no. 3, pp. 269–282, 2020.
M. Sukmana, M. Aminuddin, and D. Nopriyanto, “Indonesian government response in COVID-19 disaster prevention,” East African Sch. J. Med. Sci., vol. 3, no. 3, pp. 81–86, 2020.
Covid-19.go.id, “Situasi Covid-19 Di Indonesia,” http://covid19.go.id, 2021. .
Riau Tanggap Virus Corona, “Sebaran Covid-19 Provinsi Riau,” https://corona.riau.go.id, 2021.
C. Long et al., “Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT?,” Eur. J. Radiol., vol. 126, p. 108961, 2020.
N. Mona, “Konsep isolasi dalam jaringan sosial untuk meminimalisasi efek contagious (kasus penyebaran virus corona di Indonesia),” J. Sos. Hum. Terap., vol. 2, no. 2, 2020.
A. Hafeez, S. Ahmad, S. A. Siddqui, M. Ahmad, and S. Mishra, “A review of COVID-19 (Coronavirus Disease-2019) diagnosis, treatments and prevention,” EJMO, vol. 4, no. 2, pp. 116–125, 2020.
S. Sindi, W. R. O. Ningse, I. A. Sihombing, F. Ilmi R.H.Zer, and D. Hartama, “Analisis algoritma K-Medoids clustering dalam pengelompokan penyebaran Covid-19 di Indonesia,” Jti (Jurnal Teknol. Informasi), vol. 4, no. 1, pp. 166–173, 2020.
C. A. Sugianto, A. H. Rahayu, and A. Gusman, “Algoritma K-Means Untuk Pengelompokkan Penyakit Pasien Pada Puskesmas Cigugur Tengah,” J. Inf. Technol., vol. 2, no. 2, pp. 39–44, 2020.
A. F. Watratan and D. Moeis, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,” J. Appl. Comput. Sci. Technol., vol. 1, no. 1, pp. 7–14, 2020.
Y. Cheng, K. Chen, H. Sun, Y. Zhang, and F. Tao, “Data and knowledge mining with big data towards smart production,” J. Ind. Inf. Integr., vol. 9, no. September, pp. 1–13, 2018, doi: 10.1016/j.jii.2017.08.001.
M. Arhami, M. Kom, and S. T. Muhammad Nasir, Data Mining-Algoritma dan Implementasi. Penerbit Andi, 2020.
D. K. Sharma, S. K. Dhurandher, D. Agarwal, and K. Arora, “kROp: k-Means clustering based routing protocol for opportunistic networks,” J. Ambient Intell. Humaniz. Comput., vol. 10, no. 4, pp. 1289–1306, 2019.
S. A. Abbas, A. Aslam, A. U. Rehman, W. A. Abbasi, S. Arif, and S. Z. H. Kazmi, “K-Means and K-Medoids: Cluster Analysis on Birth Data Collected in City Muzaffarabad, Kashmir,” IEEE Access, vol. 8, pp. 151847–151855, 2020.
I. Kamila, U. Khairunnisa, and M. Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, no. 1, pp. 119–125, 2019.
S. Nawrin, M. R. Rahman, and S. Akhter, “Exploreing k-means with internal validity indexes for data clustering in traffic management system,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 3, pp. 264–272, 2017.
P. Prasetyawan, I. Ahmad, R. I. Borman, Y. A. Pahlevi, and D. E. Kurniawan, “Classification of the Period Undergraduate Study Using Back-propagation Neural Network,” in 2018 International Conference on Applied Engineering (ICAE), 2018, pp. 1–5.
S. Pramono, I. Ahmad, and R. I. Borman, “ANALISIS POTENSI DAN STRATEGI PENEMBAAN EKOWISATA DAERAH PENYANGA TAMAN NASIONAL WAY KAMBAS,” J. Teknol. dan Sist. Inf., vol. 1, no. 1, pp. 57–67, 2020.
H. Sulistiani, I. Darwanto, and I. Ahmad, “Penerapan Metode Case Based Reasoning dan K-Nearest Neighbor untuk Diagnosa Penyakit dan Hama pada Tanaman Karet,” JEPIN (Jurnal Edukasi dan Penelit. Inform., vol. 6, no. 1, pp. 23–28, 2020.
R. Adha, N. Nurhaliza, U. Sholeha, and M. Mustakim, “Perbandingan Algoritma DBSCAN dan K-Means Clustering untuk Pengelompokan Kasus Covid-19 di Dunia,” SITEKIN J. Sains, Teknol. dan Ind., vol. 18, no. 2, pp. 206–211, 2021.
H. Lu, C. W. Stratton, and Y. Tang, “Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle,” J. Med. Virol., vol. 92, no. 4, p. 401, 2020.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma K-Means dan K-Medoid untuk Pengelompokkan Data Pasien Covid-19
Pages: 48-55
Copyright (c) 2021 Umairah Rizkya Gurning, Mustakim Mustakim

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).