Perbandingan Algoritma K-Means Dan K-Medoids Pada Pengelompokan Humidity, Temperature, Dan Voltage Di Data Center Perawang


  • Nanda Try Luchia * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Mustakim Mustakim Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: DBI; Humidity; Temperature; Voltage; K-Means; K-Medoids

Abstract

A data center is a facility managed by a company for data storage (database) and telecommunications from all computer system components and needs. Monitoring the level of humidity, temperature, and voltage is needed to support the performance of the data center and can be done with AKCP. Because of that, it is necessary to group Humidity, Temperature and Voltage of Perawang DC to optimize the monitoring process. Various methods are used to make it easier for companies to determine the best grouping of performance data found in the data center. In this research, data was obtained from Systemlog AKCP PT. Arara Abadi, Perawang from January 21, 2022 – March 19, 2022. This research is expected to make it easier for companies to determine which algorithm is the right one for grouping air humidity, temperature and voltage levels in the Perawang data center by comparing two algorithms namely K-Means and K-Medoids. Based on the research results, K-Means is better in grouping the Humidity, Temperature and Voltage data of Perawang DC in PT. Arara Abadi, Perawang because it has accurate cluster accuracy compared to K-Medoids with a DBI value of 0.306 in the K=2 experiment and the process time is only 1 minute 22 seconds.

Downloads

Download data is not yet available.

References

A. S. Dwi, “SISTEM PENGAMATAN SUHU, KELEMBABAN UDARA, CURAH HUJAN, SERTA KETINGGIAN AIR LAUT OLEH BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA (BMKG) TANJUNG EMAS SEMARANG,” Mater. Japan, vol. 5, no. 1, pp. 1–12, 2020, [Online]. Available: http://joi.jlc.jst.go.jp/JST.Journalarchive/materia1994/44.24?from=CrossRef%250Ahttps://www.bertelsmann-stiftung.de/fileadmin/files/BSt/Publikationen/GrauePublikationen/MT_Globalization_Report_2018.pdf%250Ahttp://eprints.lse.ac.uk/43447/1/India_globalisation%25

I. N. Sandi, “Pengaruh Suhu Dan Kelembaban Relatif Udara Terhadap Penampilan Fisik,” Pros. Semin. Nas. Prodi Biol. F. MIPA UNHI, vol. IV, no. 5, pp. 270–276, 2016.

D. Prakoso, “Analisis pengaruh tekanan udara, kelembaban udara dan suhu udara terhadap tingkat curah hujan di kota semarang,” Univ. Negeri Semarang, pp. 1–77, 2018.

R. Friadi and Junadhi, “Sistem Kontrol Intensitas Cahaya, Suhu dan Kelembaban Udara Pada Greenhouse Berbasis Raspberry PI,” JTIS, vol. 2, no. 1, 2019.

A. Sugiarto, H. Marisa, and Sarno, Pemanasan Global di Sumatera Selatan dan Peningkatan Suhu Udara yang Terjadi, vol. 53, no. 9. 2012. [Online]. Available: http://dx.doi.org/10.1016/j.tws.2012.02.007

W. Nudian, M. Dede, M. A. Widiawaty, Y. R. Ramadhan, and Y. Purnama, “Pemanfaatan Sensor Mikro DHT11-Arduino untuk Monitoring Suhu dan Kelembaban Udara,” Semin. Nas. Pertem. Ilm. Tah. II - Ilmu Lingkung. Hidup Tahun 2019, pp. 1–13, 2019.

A. Rosman, Risdayana, E. Yuliani, and Vovi, “Karakteristik Arus dan Tegangan Pada Rangkaian Seri dan Rangkaian Paralel dengan Menggunakan Resistor,” J. Ilm. d’Computare, vol. 9, no. 2, pp. 40–43, 2019.

A. S. Osman, “Data Mining Techniques : Review,” vol. 2, no. 1, pp. 3–6, 2019.

M. Z. Rodriguez et al., Clustering algorithms: A comparative approach, vol. 14, no. 1. 2019. doi: 10.1371/journal.pone.0210236.

Athifaturrofifah, R. Goejantoro, and D. Yuniarti, “Perbandingan Pengelompokan K-Means dan K-Medoids Pada Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas (Studi Kasus : Data Titik Panas Di Indonesia Pada 28 April 2018),” J. EKSPONENSIAL, vol. 10, no. 2, pp. 143–152, 2019.

F. Farahdinna, I. Nurdiansyah, A. Suryani, and A. Wibowo, “PERBANDINGAN ALGORITMA K-MEANS DAN K-MEDOIDS DALAM,” no. January, 2019, doi: 10.22441/fifo.2019.v11i2.010.

V. Agustin and H. Sirait, “PERBANDINGAN ANALISIS CLUSTERING K-MEANS DAN K-MEDOIDS PADA DATA PENYAKIT DI INDONESIA TAHUN 2019,” 2021.

D. Marlina, N. F. Putri, A. Fernando, and A. Ramadhan, “Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak,” vol. 4, no. 2, pp. 64–71, 2018.

D. A. I. C. Dewi and D. A. K. Pramita, “Analisis Perbandingan Metode Elbow dan Sillhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” vol. 9, no. 3, 2019.

M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A comprehensive survey and performance evaluation,” Electron., vol. 9, no. 8, pp. 1–12, 2020, doi: 10.3390/electronics9081295.

K. P. Sinaga and M. S. Yang, “Unsupervised K-means clustering algorithm,” IEEE Access, vol. 8, pp. 80716–80727, 2020, doi: 10.1109/ACCESS.2020.2988796.

R. Wulan Sari, A. Wanto, and A. Perdana Windarto, “KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer) IMPLEMENTASI RAPIDMINER DENGAN METODE K-MEANS (STUDY KASUS: IMUNISASI CAMPAK PADA BALITA BERDASARKAN PROVINSI),” vol. 2, no. 1, pp. 224–230, 2018, [Online]. Available: http://ejurnal.stmik-budidarma.ac.id/index.php/komik

M. N. V. Waworuntu and M. Faisal Amin, “Penerapan Metode K-Means Untuk Pemetaan Calon Penerima Jamkesda,” Klik - Kumpul. J. Ilmu Komput., vol. 5, no. 2, p. 190, 2018, doi: 10.20527/klik.v5i2.157.

R. Supardi and I. Kanedi, “Implementasi Metode Algoritma K-Means Clustering pada Toko Eidelweis,” J. Teknol. Inf., vol. 4, no. 2, pp. 270–277, 2020, doi: 10.36294/jurti.v4i2.1444.

S. Sundari, I. Sudahri Damanik, A. Perdana Windarto, H. Satria Tambunan, and A. Wanto, “Prosiding Seminar Nasional Riset Information Science (SENARIS) K-Medoids Clustering Dalam Pengelompokkan Data Imunisasi Campak Balita (Siti Sundari) Analisis K-Medoids Clustering Dalam Pengelompokkan Data Imunisasi Campak Balita di Indonesia,” no. September, pp. 687–696, 2019.

R. K. Dinata, S. Retno, and N. Hasdyna, “Minimization of the Number of Iterations in K-Medoids Clustering with Purity Algorithm,” Rev. d’Intelligence Artif., vol. 35, no. 3, pp. 193–199, 2021, doi: 10.18280/ria.350302.

D. A. Silitonga, A. P. Windarto, D. Hartama, and Sumarno, “Penerapan Metode K-Medoid pada Pengelompokan Rumah Tangga Dalam Perlakuan Memilah Sampah Menurut Provinsi,” Semin. Nas. Sains Teknol. Inf. SENSASI 2019 ISBN, pp. 313–318, 2019.

S. Sindi, W. R. O. Ningse, I. A. Sihombing, F. I. R.H.Zer, and D. Hartama, “Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 Di Indonesia,” J. Teknol. Inf., vol. 4, no. 1, pp. 166–173, 2020, doi: 10.36294/jurti.v4i1.1296.

B. Jumadi Dehotman Sitompul, O. Salim Sitompul, and P. Sihombing, “Enhancement Clustering Evaluation Result of Davies-Bouldin Index with Determining Initial Centroid of K-Means Algorithm,” J. Phys. Conf. Ser., vol. 1235, no. 1, 2019, doi: 10.1088/1742-6596/1235/1/012015.

M. Mughnyanti, S. Efendi, and M. Zarlis, “Analysis of determining centroid clustering x-means algorithm with davies-bouldin index evaluation,” IOP Conf. Ser. Mater. Sci. Eng., vol. 725, no. 1, 2020, doi: 10.1088/1757-899X/725/1/012128.

B. Surarso and R. Gernowo, “Implementation of K- Medoids Clustering for High Education Accreditation Data,” J. Ilm. KURSOR, vol. 10, no. 3, pp. 119–128, 2020.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Algoritma K-Means Dan K-Medoids Pada Pengelompokan Humidity, Temperature, Dan Voltage Di Data Center Perawang

Dimensions Badge
Article History
Submitted: 2022-10-18
Published: 2022-10-30
Abstract View: 73 times
PDF Download: 60 times
How to Cite
Luchia, N., & Mustakim, M. (2022). Perbandingan Algoritma K-Means Dan K-Medoids Pada Pengelompokan Humidity, Temperature, Dan Voltage Di Data Center Perawang. Journal of Information System Research (JOSH), 4(1), 184-190. https://doi.org/10.47065/josh.v4i1.2385
Section
Articles