Penerapan Algoritma Support Vector Regression untuk Prediksi Jumlah Pasien Covid-19 di Provinsi Riau


  • Adyah Widiarni Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Mustakim Mustakim * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Covid-19; K-Fold Cross Validation; Prediction; Support Vector Regression

Abstract

In 2019, at the end of December, there was an outbreak of a disease with an unknown cause in Wuhan, Hubei Province, China. The World Health Organization has named the outbreak of the disease as coronavirus caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) or Covid-19. Covid-19 is a disease outbreak that has spread in various regions of Indonesia, such as in Riau, at PT. Nusantara V Plantation (PTPN V). So we need a way to increase awareness and vigilance, namely by presenting information using Data Mining in predicting the number of cases with thealgorithm Support Vector Regression (SVR). The prediction process is carried out using SVR by specifying the SVR and Kernel Linear parameters. The SVR algorithm can predict the number of Covid-19 patients in the next 30 days so that the Correlation Coefficienti (R) level is 85% and the Mean Square Error (MSE) value is 0.196. From the results of the experiment, there was a decrease in cases of Covid-19 patients at PT. Perkebunan Nusantara V in the next 30 days, with the acquisition of the best minimum sensitivity value of 0.09

Downloads

Download data is not yet available.

References

F. He, Y. Deng, and W. Li, “Coronavirus disease 2019: What we know?,” J. Med. Virol., vol. 92, no. 7, pp. 719–725, 2020, doi: 10.1002/jmv.25766.

R. R. Pratiwi, D. A. Artha, and H. Nurlaily, “Analisa Yuridis Penetapan Covid 19 Sebagai Kedaruratan Kesehatan Masyarakat Ditinjau Dari Peraturan Perundang-Undangan di Indonesia,” Inicio Legis, vol. 1, no. 1, pp. 1–14, 2020, doi: 10.21107/il.v1i1.8827.

S. Ningsih, “Persepsi Mahasiswa Terhadap Pembelajaran Daring Pada Masa Pandemi Covid-19,” JINOTEP (Jurnal Inov. dan Teknol. Pembelajaran) Kaji. dan Ris. Dalam Teknol. Pembelajaran, vol. 7, no. 2, pp. 124–132, 2020, doi: 10.17977/um031v7i22020p124.

R. R. Al Hakim, “Pencegahan Penularan Covid-19 Berbasis Aplikasi Android Sebagai Implementasi Kegiatan KKN Tematik Covid-19 di Sokanegara Purwokerto Banyumas,” Community Engagem. Emerg. J., vol. 2, no. 1, pp. 7–13, 2021, doi: 10.37385/ceej.v2i1.125.

I. T. Kompas. com, Kontributor Pekanbaru, “21 Karyawan PTPN V Riau Positif Covid-19, Ini Upaya Memutus Penyebarannya.” [Online]. Available: https://regional.kompas.com/read/2020/09/22/17272981/21-karyawan-ptpn-v-riau-positif-covid-19-ini-upaya-memutus-penyebarannya.

J. Ilmiah and K. Sandi, “Pendahuluan Metode,” vol. 10, pp. 356–363, 2021, doi: 10.35816/jiskh.

N. P. G. Naraswati, R. Nooraeni, D. C. Rosmilda, D. Desinta, F. Khairi, and R. Damaiyanti, “Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification,” Sistemasi, vol. 10, no. 1, p. 222, 2021, doi: 10.32520/stmsi.v10i1.1179.

D. Purwitasari et al., “Time Series Analysis for Understanding Local Policy Impact of COVID-19 Cases in East Java,” CENIM 2020 - Proceeding Int. Conf. Comput. Eng. Network, Intell. Multimed. 2020, no. Cenim 2020, pp. 52–57, 2020, doi: 10.1109/CENIM51130.2020.9297933.

M. C. M. Prasad, L. F. Florence, and A. Arya3, “A Study on Software Metrics based Software Defect Prediction using Data Mining and Machine Learning Techniques,” Int. J. Database Theory Appl., vol. 8, no. 3, pp. 179–190, 2015, doi: 10.14257/ijdta.2015.8.3.15.

L. Kusrini, “Algoritma Data Mining.” 2009.

H. ; sugito Septiningrum, Lutfia; Yasin, “PREDIKSI INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN SUPPORT VECTOR REGRESSION (SVR) DENGAN ALGORITMA GRID SEARCH,” vol. 4, pp. 315–321, 2015.

L. Surtiningsih, M. T. Furqon, and S. Adinugroho, “Prediksi Jumlah Kunjungan Wisatawan Mancanegara Ke Bali Menggunakan Support Vector Regression dengan Algoritma Genetika,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 8, pp. 2578–2586, 2018.

A. Kurniawati and A. Arima, “Analisis Prediksi Harga Saham PT. Astra International Tbk Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) dan Support Vector Regression (SVR),” vol. 20, no. September, pp. 417–423, 2021.

K. O. Akande, T. O. Owolabi, S. O. Olatunji, and A. Abdulraheem, “A Novel Homogenous Hybridization Scheme for Performance Improvement of Support Vector Machines Regression in Reservoir Characterization,” Appl. Comput. Intell. Soft Comput., vol. 2016, pp. 1–10, 2016, doi: 10.1155/2016/2580169.

R. A. Putri, W. S. Winahju, and M. Mashuri, “Penerapan Metode Ridge Regression dan Support Vector Regression ( SVR ) untuk Prediksi Indeks Batubara di PT XYZ,” vol. 9, no. 1, pp. 64–71, 2020.

A. B. Raharjo, Z. Z. Dinanto, D. Sunaryono, and D. Purwitasari, “Prediksi Akumulasi Kasus Terkonfirmasi Covid-19 Di Indonesia Menggunakan Support Vector Regression,” Techno.Com, vol. 20, no. 3, pp. 372–381, 2021, doi: 10.33633/tc.v20i3.5062.

R. Sistem, M. Perceptron, and L. Sederhana, “JURNAL RESTI Analisis Pola Prediksi Data Time Series menggunakan Support Vector,” vol. 1, no. 10, pp. 282–287, 2019.

Mustakim, A. Buono, and I. Hermadi, “SUPPORT VECTOR REGRESSION UNTUK PREDIKSI,” vol. 12, no. 2, pp. 179–188, 2015.

M. Ciotti, M. Ciccozzi, A. Terrinoni, W. C. Jiang, C. Bin Wang, and S. Bernardini, “The COVID-19 pandemic,” Crit. Rev. Clin. Lab. Sci., vol. 57, no. 6, pp. 365–388, 2020, doi: 10.1080/10408363.2020.1783198.

H. Lu, C. W. Stratton, and Y. W. Tang, “Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle,” J. Med. Virol., vol. 92, no. 4, pp. 401–402, 2020, doi: 10.1002/jmv.25678.

M. L. Holshue et al., “First Case of 2019 Novel Coronavirus in the United States,” N. Engl. J. Med., vol. 382, no. 10, pp. 929–936, 2020, doi: 10.1056/nejmoa2001191.

G. Benoît, “Data mining,” Annual Review of Information Science and Technology, vol. 36. pp. 265–310, 2002, doi: 10.1002/aris.1440360107.

N. D. Maulana, B. D. Setiawan, and C. Dewi, “Implementasi Metode Support Vector Regression ( SVR ) Dalam Peramalan Penjualan Roti ( Studi Kasus : Harum Bakery ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2986–2995, 2019.

S. Saadah, “Support Vector Regression ( SVR ) Dalam Memprediksi Harga Minyak Kelapa Sawit di Indonesia dan Nilai Tukar Mata Uang EUR / USD,” vol. 5, no. 1, pp. 85–92, 2021.

M. Mustakim, C. Bella, and Y. R. Pratama, “Prediksi Jumlah Tunggakan Pajak Kendaraan Jatuh Tempo Menggunakan Algoritma Support Vector Regression,” Semin. Nas. Teknol. Informasi, Komun. dan Ind. 11, no. November 2017, pp. 1–11, 2019.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Algoritma Support Vector Regression untuk Prediksi Jumlah Pasien Covid-19 di Provinsi Riau

Dimensions Badge
Article History
Submitted: 2021-09-05
Published: 2021-09-29
Abstract View: 561 times
PDF Download: 413 times
How to Cite
Widiarni, A., & Mustakim, M. (2021). Penerapan Algoritma Support Vector Regression untuk Prediksi Jumlah Pasien Covid-19 di Provinsi Riau. Building of Informatics, Technology and Science (BITS), 3(2), 71-78. https://doi.org/10.47065/bits.v3i2.1004
Section
Articles

Most read articles by the same author(s)