Analisis Sentimen Terhadap Program Makan Bergizi Gratis Menggunakan Algoritma Machine Learning Pada Sosial Media X
Abstract
The government has launched the Free Nutritious Meal Program as part of a strategic effort to reduce stunting in Indonesia. However, the program has generated a lot of controversy among the public, especially regarding the large budget allocation that is considered burdensome and its impact on the education sector and the country's financial stability. This study aims to analyze public sentiment towards the program by utilizing data from social media platform X (Twitter) as much as 2,400 data. Public sentiment is classified into three categories, namely positive, negative, and neutral, using two machine learning algorithms, namely Support Vector Machine (SVM) and Random Forest. In addition, the SMOTE technique is used to handle data imbalance in the model training process. The analysis results showed that negative sentiments dominated at 46%, with the main issue highlighted being the high budget allocation and its impact on education. In terms of performance, the SVM algorithm with SMOTE produced the highest accuracy of 85.74%, outperforming the Random Forest algorithm which only achieved 81.53% accuracy.
Downloads
References
Kementerian Kesehatan RI, “Prevalensi Stunting di Indonesia Turun ke 21,6% dari 24,4%.” Accessed: Dec. 24, 2024. [Online]. Available: https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20230125/3142280/prevalensi-stunting-di-indonesia-turun-ke-216-dari-244/
Tundo and D. N. Rachmawati, “Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Terhadap Program Makan Siang Gratis,” Jurnal Indonesia : Manajemen Informatika dan Komunikasi, vol. 5, no. 3, pp. 2925–2939, Sep. 2024, doi: 10.35870/jimik.v5i3.978.
N. A. Rahmawati, S. A. Prasetyo, and M. W. Ramadhani, “Memetakan Visi Prabowo Gibran Pada Masa Kampanye Dalam Prespektif Pembangunan,” WISSEN : Jurnal Ilmu Sosial dan Humaniora, vol. 2, no. 3, pp. 97–120, Jun. 2024, doi: 10.62383/wissen.v2i3.176.
P. A. Maharani, A. R. Namira, and T. V. Chairunnisa, “Peran Makan Siang Gratis Dalam Janji Kampanye Prabowo Gibran Dan Realisasinya,” Journal Of Law And Social Society, vol. 1, no. 1, pp. 1–10, Jun. 2024, doi: 10.70656/jolasos.v1i1.79.
C. Steven and W. Wella, “The Right Sentiment Analysis Method of Indonesian Tourism in Social Media Twitter,” IJNMT (International Journal of New Media Technology), vol. 7, no. 2, pp. 102–110, Dec. 2020, doi: 10.31937/ijnmt.v7i2.1732.
F. R. B. Kahi, A. Talakua, and R. Reynaldi, “Analisis Sentimen Masyarakat Di Twitter Terhadap Pemerintahan Anies Baswedan Menggunakan Metode Naive Bayes Classifier,” Jurnal Minfo Polgan, vol. 13, no. 1, pp. 324–336, Apr. 2024, doi: 10.33395/jmp.v13i1.13636.
M. Iqbal, M. Afdal, and R. Novita, “Implementasi Algoritma Support Vector Machine Untuk Analisa Sentimen Data Ulasan Aplikasi Pinjaman Online di Google Play Store,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 4, pp. 1244–1252, Jul. 2024, doi: 10.57152/malcom.v4i4.1435.
A. Sitanggang, Y. Umaidah, Y. Umaidah, R. I. Adam, and R. I. Adam, “Analisis Sentimen Masyarakat Terhadap Program Makan Siang Gratis Pada Media Sosial X Menggunakan Algoritma Naïve Bayes,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3, Aug. 2024, doi: 10.23960/jitet.v12i3.4902.
S. D. Wahyuni and R. H. Kusumodestoni, “Optimalisasi Algoritma Support Vector Machine (SVM) Dalam Klasifikasi Kejadian Data Stunting,” Bulletin of Information Technology (BIT), vol. 5, no. 2, pp. 56–64, 2024, doi: 10.47065/bit.v5i2.1247.
A. M. Siregar, “Analisis Sentimen Pindah Ibu Kota Negara (IKN) Baru pada Twitter Menggunakan Algoritma Naive Bayes dan Support Vector Machine (SVM),” Faktor Exacta, vol. 16, no. 3, Oct. 2023, doi: 10.30998/faktorexacta.v16i3.16703.
E. Fitri, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine,” Jurnal Transformatika, vol. 18, no. 1, p. 71, Jul. 2020, doi: 10.26623/transformatika.v18i1.2317.
A. Wandani, “Sentimen Analisis Pengguna Twitter pada Event Flash Sale Menggunakan Algoritma K-NN, Random Forest, dan Naive Bayes,” Jurnal Sains Komputer & Informatika (J-SAKTI), vol. 5, no. 2, pp. 651–665, Sep. 2021.
A. Ramadhani, I. Permana, M. Afdal, and M. Fronita, “Analisis Sentimen Tanggapan Publik di Twitter Terkait Program Kerja Makan Siang Gratis Prabowo-Gibran Menggunakan Algoritma Naïve Bayes Classifier dan Support Vector Machine,” Technology and Science (BITS), vol. 6, no. 3, 2024, doi: 10.47065/bits.v6i3.6188.
Z. Purwanti and Sugiyono, “Pemodelan Text Mining untuk Analisis Sentimen Terhadap Program Makan Siang Gratis di Media Sosial X Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Indonesia : Manajemen Informatika dan Komunikasi, vol. 5, no. 3, pp. 3065–3079, Sep. 2024, doi: 10.35870/jimik.v5i3.1001.
P. K. Sari and R. R. Suryono, “Komparasi Algoritma Support Vector Machine Dan Random Forest Untuk Analisis Sentimen Metaverse,” Jurnal Mnemonic, vol. 7, no. 1, pp. 31–39, Feb. 2024, doi: 10.36040/mnemonic.v7i1.8977.
D. A. Fitri, “Komparasi Algoritma Random Forest Classifier Dan Support Vector Machine Untuk Sentimen Masyarakat Terhadap Pinjaman Online Di Media Sosial,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 4, pp. 2018–2029, 2024, doi: 10.29100/jipi.v9i4.5608.
R. W. Purba, A. A. Waskita, and M. Makshun, “Analisis Sentimen Opini Debat Calon Presiden Dengan Menggunakan Classifier Machine Learning (Studi Kasus : Pada Data Twitter 2024),” Infotech: Journal of Technology Information, vol. 10, no. 2, pp. 221–232, Nov. 2024, doi: 10.37365/jti.v10i2.300.
I. S. K. Idris, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),” Jambura Journal of Electrical and Electronics Engineering, vol. 5, no. 1, pp. 32–35, Jan. 2023, doi: 10.37905/jjeee.v5i1.16830.
W. Widayat, “Analisis Sentimen Movie Review menggunakan Word2Vec dan metode LSTM Deep Learning,” Jurnal Media Informatika Budidarma, vol. 5, no. 3, p. 1018, Jul. 2021, doi: 10.30865/mib.v5i3.3111.
E. Miranda, R. A. Elias, T. M. Kibtiah, and A. Permana, “Indonesia China Trade Relations, Social Media and Sentiment Analysis: Insight from Text Mining Technique,” in 2021 1st International Conference on Computer Science and Artificial Intelligence (ICCSAI), IEEE, Oct. 2021, pp. 334–339. doi: 10.1109/ICCSAI53272.2021.9609735.
P. H. Prastyo, I. Ardiyanto, and R. Hidayat, “Indonesian Sentiment Analysis: An Experimental Study of Four Kernel Functions on SVM Algorithm with TF-IDF,” in 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), IEEE, Oct. 2020, pp. 1–6. doi: 10.1109/ICDABI51230.2020.9325685.
K. A. Rokhman, B. Berlilana, and P. Arsi, “Perbandingan Metode Support Vector Machine Dan Decision Tree Untuk Analisis Sentimen Review Komentar Pada Aplikasi Transportasi Online,” Journal of Information System Management (JOISM), vol. 3, no. 1, pp. 1–7, Jan. 2021, doi: 10.24076/JOISM.2021v3i1.341.
H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, Feb. 2021, doi: 10.34148/teknika.v10i1.311.
M. K. Suryadi, R. Herteno, S. W. Saputro, M. R. Faisal, and R. A. Nugroho, “Comparative Study of Various Hyperparameter Tuning on Random Forest Classification With SMOTE and Feature Selection Using Genetic Algorithm in Software Defect Prediction,” Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol. 6, no. 2, pp. 137–147, Mar. 2024, doi: 10.35882/jeeemi.v6i2.375.
Y. F. Zamzam, T. H. Saragih, R. Herteno, Muliadi, D. T. Nugrahadi, and P.-H. Huynh, “Comparison of CatBoost and Random Forest Methods for Lung Cancer Classification using Hyperparameter Tuning Bayesian Optimization-based,” Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol. 6, no. 2, pp. 125–136, Mar. 2024, doi: 10.35882/jeeemi.v6i2.382.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Terhadap Program Makan Bergizi Gratis Menggunakan Algoritma Machine Learning Pada Sosial Media X
Pages: 2240-2250
Copyright (c) 2025 Elsa Triningsih, M Afdal, Inggih Permana, Nesdi Evrilyan Rozanda

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).