Klasifikasi Sentimen Pengguna X Terhadap Pemboikotan Produk Pro Israel Menggunakan Algoritma Machine Learning
Abstract
The campaign to boycott pro-Israel goods emerged as a result of the enduring conflict between Israel and Palestine. This boycott initiative led to a decline in sales, which adversely impacted the livelihoods of employees, manifesting in diminished bonuses, salary reductions, and job terminations. Such actions elicited a variety of reactions from the public on platform X. This study seeks to categorize the sentiments of X users regarding the boycott of pro-Israel products by comparing the efficacy of Machine Learning algorithms, namely Support Vector Machine and Random Forest. To address the class imbalance within the dataset, this research employs the synthetic minority over-sampling technique (SMOTE). The dataset comprised 2,275 entries, gathered through web scraping methods on the X platform. The findings indicate that a majority of X users in Indonesia endorse the boycott movement, exhibiting a positive sentiment of 58%. The SVM algorithm, when combined with SMOTE, demonstrated the highest performance in sentiment classification, achieving an accuracy of 90.54%, whereas Random Forest attained an accuracy of only 83.1%. This research offers insights into the views of the Indonesian populace regarding the boycott of pro-Israel products.
Downloads
References
M. R. R. Prasetya, “Human Security: Konflik Palestina Dan Israel,” Public Knowl., vol. 1, no. 1, pp. 33–41, 2024, doi: 10.62771/pk.v1i1.4.
P. Wibowo, R. D. Hapsari, and M. C. Ascha, “Respon Publik Terhadap Fatwa Boikot Produk Israel Oleh Majelis Ulama Indonesia,” J. Publicuho, vol. 7, no. 1, pp. 382–395, 2024, doi: 10.35817/publicuho.v7i1.371.
Oktavia, M. R. Noval, H. Rizka, and M. F. Handayani, “Pengaruh Dampak Boikot Produk Amerika Terhadap Perokonomian Indonesia,” J. Mutiara Ilmu Akunt., vol. 2, no. 1, pp. 318–323, 2023, doi: 10.55606/jumia.v2i1.2377.
M. Risqi, F. Septiazi, and N. Yuliana, “Triwikrama: Jurnal Multidisiplin Ilmu Sosial Analisis Pengaruh Media Sosial Terhadap Gerakan Boikot Produk Israel Di Indonesia,” J. Multidisiplin Ilmu Sos., vol. 2, no. 4, pp. 2023–2054, 2023.
A. S. Sulaeman, A. Sujjada, and I. L. Kharisma, “Penerapan Algoritma Cerdas Bidirectional Encoder Refresentations From Transformers Dalam Menganalisis Opini Publik Terhadap Produk Yang Mengalami Boikot,” INOVTEK Polbeng - Seri Inform., vol. 9, no. 1, pp. 460–473, 2024, doi: 10.35314/isi.v9i1.4252.
Majelis Ulama Indonesia (MUI), “Fatwa Majelis Ulama Indonesia Nomor 83 Tahun 2023 tentang Hukum Dukungan terhadap Perjuangan Palestina,” Jakarta, 2023. [Online]. Available: https://fatwamui.com/storage/554/Fatwa-MUI-Nomor-83-Tahun-2023-tentang-Hukum-Dukungan-Terhadap-Perjuangan-Palestina.pdf
Amin Awal Amarudin, Novi Ria Ananta, Nurun Nisaul Khusna, Regita Juninda Berliani, and Sri Oktavianah, “Analisis Literasi Halal Dan Preferensi Produk Yang Diboikot Pada Mahasiswa Universitas KH. A. Wahab Hasbullah,” Pop. J. Penelit. Mhs., vol. 3, no. 1, pp. 210–222, 2024, doi: 10.58192/populer.v3i1.1948.
D. Kundana and Chairani, “Data-Driven Analysis of Borobudur Ticket Sentiment Using Naïve Bayes,” APTISI Trans. Technopreneursh., vol. 5, no. 2Sp, pp. 221–233, 2023, doi: 10.34306/att.v5i2sp.353.
Apif Supriadi and Fatmasari, “Implementasi Metode Klasifikasi Naive Bayes Pada Sistem Analisis Opini Pengguna Twitter Berbasis Web,” J. Sist. Inf., vol. 10, no. 1, pp. 46–54, 2021, doi: 10.51998/jsi.v10i1.356.
J. K. Kim, A. Khondker, M. E. Chua, M. Rickard, and A. Lorenzo, “Sentiment analysis of U.S. News & World Report Best Children’s Hospital urology rankings: A difference in positivity between the public and academic worlds,” J. Pediatr. Urol., vol. 20, pp. S81–S85, 2024, doi: 10.1016/j.jpurol.2024.06.001.
O. Alsemaree, A. S. Alam, S. S. Gill, and S. Uhlig, “Sentiment analysis of Arabic social media texts: A machine learning approach to deciphering customer perceptions,” Heliyon, vol. 10, no. 9, p. e27863, 2024, doi: 10.1016/j.heliyon.2024.e27863.
R. Zhang, Y. Li, Y. Gui, D. J. Armaghani, and M. Yari, “A stacked multiple kernel support vector machine for blast induced flyrock prediction,” Geohazard Mech., vol. 2, no. 1, pp. 37–48, 2024, doi: 10.1016/j.ghm.2024.01.002.
R. Sheila, T. Rahmayani, and F. Budiman, “Analisa Optimasi Grid Search pada Algoritma Random Forest dan Decision Tree untuk Klasifikasi Stunting,” vol. 6, no. 3, pp. 1537–1546, 2024, doi: 10.47065/bits.v6i3.6128.
C. F. Alifa and D. Alita, “Analisis Opini Publik Tentang Boikot Produk Pro-Israel di Twitter Berbahasa Indonesia Menggunakan Metode SVM,” J. Inform. J. Pengemb. IT, vol. 9, no. 2, pp. 112–120, 2024, doi: 10.30591/jpit.v9i2.6559.
F. Fahrani, J. Aryanto, and U. T. Yogyakarta, “Sentiment Analysis of Public Opinion on the Palestinian-Israeli Conflict using Support Vector Machine and Naïve Bayes Algorithms,” JSRET (Journal Sci. Res. Educ. Technol., vol. 3, no. 4, pp. 1890–1900, 2024, doi: https://doi.org/10.58526/jsret.v3i4.606.
M. L. Pratama, Y. V. Via, and E. P. Mandyartha, “Analisis Performansi Naive Bayes Dan Random Forest Terhadap Sentimen Kenaikan Harga BBM di Indonesia,” Scan J. Teknol. Inf. dan Komun., vol. 18, no. 1, 2023, doi: 10.33005/scan.v18i1.3837.
Ni Made Tara Okta Adriana, I Made Agus Dwi Suarjaya, and Dwi Putra Githa, “Analisis Sentimen Publik Terhadap Aksi Demonstrasi di Indonesia Menggunakan Support Vector Machine Dan Random Forest,” Decod. J. Pendidik. Teknol. Inf., vol. 3, no. 2, pp. 257–267, 2023, doi: 10.51454/decode.v3i2.187.
I. Septiana and D. Alita, “Perbandingan Random Forest dan SVM dalam Analisis Sentimen Quick Count Pemilu 2024,” vol. 9, no. 3, pp. 224–233, 2024, doi: 10.30591/jpit.v9i3.6640.
A. Almas, U. D. Zd, and A. D. W. I. Hartanto, “Analisis Sentimen Pemindahan Ibu Kota Negara (IKN) Menggunakan Metode Oversampling Synthetic Minority (SMOTE),” vol. 9, pp. 324–335, 2024, doi: https://doi.org/10.24252/instek.v9i2.50944.
A. A. Syed, F. L. Gaol, A. Boediman, and W. Budiharto, “Airline reviews processing: Abstractive summarization and rating-based sentiment classification using deep transfer learning,” Int. J. Inf. Manag. Data Insights, vol. 4, no. 2, p. 100238, 2024, doi: 10.1016/j.jjimei.2024.100238.
E. Suryati, Styawati, and A. A. Aldino, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM),” J. Teknol. Dan Sist. Inf., vol. 4, no. 1, pp. 96–106, 2023, doi: https://doi.org/10.33365/jtsi.v4i1.2445.
Ash Shiddicky and Surya Agustian, “Analisis Sentimen Masyarakat Terhadap Kebijakan Vaksinasi Covid-19 pada Media Sosial Twitter menggunakan Metode Logistic Regression,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 2, pp. 99–106, 2022, doi: 10.37859/coscitech.v3i2.3836.
A. Daza, N. D. González Rueda, M. S. Aguilar Sánchez, W. F. Robles Espíritu, and M. E. Chauca Quiñones, “Sentiment Analysis on E-Commerce Product Reviews Using Machine Learning and Deep Learning Algorithms: A Bibliometric Analysisand Systematic Literature Review, Challenges and Future Works,” Int. J. Inf. Manag. Data Insights, vol. 4, no. 2, 2024, doi: 10.1016/j.jjimei.2024.100267.
J. S. Pimentel, R. Ospina, and A. Ara, “A novel fusion Support Vector Machine integrating weak and sphere models for classification challenges with massive data,” Decis. Anal. J., vol. 11, no. March, p. 100457, 2024, doi: 10.1016/j.dajour.2024.100457.
T. B. Rizal Amegia Saputra, Diah Puspitasari, “Deteksi Kematangan Buah Melon dengan Algoritma Support Vector Machine Berbasis Ekstraksi Fitur GLCM,” J. Infortech, vol. 4, no. 2, pp. 200–206, 2022.
D. L. Rianti, Y. Umaidah, and A. Voutama, “Tren Marketplace Berdasarkan Klasifikasi Ulasan Pelanggan Menggunakan Perbandingan Kernel Support Vector Machine,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 6, no. 1, p. 98, 2021, doi: 10.30998/string.v6i1.9993.
C. Sonjaya, A. F. Nur Masruriyah, D. Sulistya Kusumaningrum, and A. Rizky Pratama, “The Performance Comparison of Classification Algorithm in Order to Detecting Heart Disease,” Intern. (Information Syst. Journal), vol. 5, no. 2, pp. 166–175, 2022, doi: 10.32627/internal.v5i2.595.
J. F. Tuttle, L. D. Blackburn, and K. M. Powell, “On-line classification of coal combustion quality using nonlinear SVM for improved neural network NOx emission rate prediction,” Comput. Chem. Eng., vol. 141, p. 106990, 2020, doi: 10.1016/j.compchemeng.2020.106990.
N. A. Hapsari and A. D. Indriyanti, “Analisis Sentimen pada Aplikasi Dompet Digital Menggunakan Algoritma Random Forest,” J. Emerg. Inf. Syst. Bus. Intell., vol. 04, no. 03, pp. 186–192, 2023, [Online]. Available: https://ejournal.unesa.ac.id/index.php/JEISBI/article/view/55696
M. K. Suryadi, R. Herteno, S. W. Saputro, M. R. Faisal, and R. A. Nugroho, “A Comparative Study of Various Hyperparameter Tuning on Random Forest Classification with SMOTE and Feature Selection Using Genetic Algorithm in Software Defect Prediction,” J. Electron. Electromed. Eng. Med. Informatics, vol. 6, no. 2, pp. 137–147, 2024, doi: 10.35882/jeeemi.v6i2.375.
P. S. Yadav, R. S. Rao, A. Mishra, and M. Gupta, “Ensemble methods with feature selection and data balancing for improved code smells classification performance,” Eng. Appl. Artif. Intell., vol. 139, no. PA, p. 109527, 2025, doi: 10.1016/j.engappai.2024.109527.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Sentimen Pengguna X Terhadap Pemboikotan Produk Pro Israel Menggunakan Algoritma Machine Learning
Pages: 2270-2280
Copyright (c) 2025 Pingki Muliya Susanti, M Afdal, Inggih Permana, Arif Marsal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).