Analisis Sentimen Ulasan Aplikasi Wetv Untuk Peningkatan Layanan Menggunakan Metode Support Vector Machine


  • Rezky Abdillah * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Elin Haerani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Reski Mai Candra Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Sentiment Analysis; Confusion Matrix; Python; TF-IDF; WeTV

Abstract

Wetv is an online streaming media that has been running since 2019. Wetv has many user reviews from various applications. The rating consists of positive, neutral and negative. The response is used to determine sentiment by using the support vector machine classification method. This study took 12,000 comments from the Google Play Store, this study used preprocessing namely, cleaning, case folding, tokenizing, normalization, stopword removal, and steaming, then to the TF-IDF stage and the final results were tested with a fusion matrix with the Python program, the score results highest from the acquisition test process with accuracy of 0.76%, precision of 0.77%, recall of 0.79%, and f1 score of 0.78, in a dataset of 90% training data and 10% test data. Based on the research results of the Support Vector Machine method which is known to be good in the process of requesting negative responses on WeTV.

Downloads

Download data is not yet available.

References

M. F. Al-shufi and A. Erfina, “Sentimen Analisis Mengenai Aplikasi Streaming Film Menggunakan Algoritma Support Vector Machine Di Play Store,” Sismatik, pp. 156–162, 2021.

J. Krisiyono, KONVEGENSI MEDIA Tranformasi Media Komunikasi di Era Digital pada Masyarakat Berjejaring, 1st ed. Jakarta: Kencana, 2022.

R. El Husna, R. Wasono, M. Al Haris, U. M. Semarang, and A. Sentimen, “Analisis Sentimen pada Twitter Mengenai Netflix Diblokis Telkom Menggunakan Support Vector Machine,” Semin. Nas. Variansi, pp. 214–222, 2020.

M. D. Hendriyanto, A. A. Ridha, and U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 5, no. 1, pp. 1–7, 2022, doi: 10.31539/intecoms.v5i1.3708.

A. Novantika, “Analisis Sentimen Ulasan Pengguna Aplikasi Video Conference Google Meet menggunakan Metode SVM dan Logistic Regression,” Prism. Pros. Semin. Nas. Mat., vol. 5, pp. 808–813, 2022, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

H. Tuhuteru, “Analisis Sentimen Masyarakat Terhadap Pembatasan Sosial Berksala Besar Menggunakan Algoritma Support Vector Machine,” Inf. Syst. Dev., vol. 5, no. 2, pp. 7–13, 2020.

M. Ramadhan and R. Andarsyah, KLASIFIKASI TEKS SPAM MENGGUNAKAN METODE SUPPORT VECTOR MACHINE DAN NAIVE BAYES. Bandung: Penerbit Buku Pedia, 2022.

N. Purwati, H. Kurniawan, and S. Karnila, DATA MINING. Purwokerto: Zahira Media Publisher, 2021.

Z. Munawar and dkk, Big Data Analytics Konsep, Implementasi, dan Aplikasi Terkini, 1st ed. Bandung: Kaizen Media Publishing, 2023.

N. P. G. Naraswati, R. Nooraeni, D. C. Rosmilda, D. Desinta, F. Khairi, and R. Damaiyanti, “Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification,” Sistemasi, vol. 10, no. 1, p. 222, 2021, doi: 10.32520/stmsi.v10i1.1179.

A. Gormantara, “Analisis Sentimen Terhadap New Normal Era di Indonesia pada Twitter Analisis Sentimen Terhadap New Normal Era di Indonesia pada Twitter Menggunakan Metode Support Vector Machine,” Konf. Nas. Ilmu Komput. 2020, no. July, pp. 1–5, 2020.

F. D. Ananda and Y. Pristyanto, “Analisis Sentimen Pengguna Twitter Terhadap Layanan Internet Provider Menggunakan Algoritma Support Vector Machine,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 2, pp. 407–416, 2021, doi: 10.30812/matrik.v20i2.1130.

A. R. Isnain, A. I. Sakti, D. Alita, and N. S. Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm,” J. Data Min. dan Sist. Inf., vol. 2, no. 1, p. 31, 2021, doi: 10.33365/jdmsi.v2i1.1021.

R. T. Aldisa and P. Maulana, “Analisis Sentimen Opini Masyarakat Terhadap Vaksinasi Booster COVID- 19 Dengan Perbandingan Metode Naive Bayes , Decision Tree dan SVM,” vol. 4, no. 1, pp. 106–109, 2022, doi: 10.47065/bits.v4i1.1581.

Raksaka Indra Alhaqq, I Made Kurniawan Putra, and Yova Ruldeviyani, “Analisis Sentimen terhadap Penggunaan Aplikasi MySAPK BKN di Google Play Store,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 11, no. 2, pp. 105–113, 2022, doi: 10.22146/jnteti.v11i2.3528.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021, [Online]. Available: http://ejurnal.tunasbangsa.ac.id/index.php/jsakti/article/view/369

M. Amrullah and S. Pane, Analisis Sentimen Masyarakat Terhadap Kebijakan Polisi Tilang Manual Di Indonesia. Bandung: Penerbit Buku Pedia, 2023.

A. M. Pravina, I. Cholissodin, and P. P. Adikara, “Analisis Sentimen Tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine ( SVM ),” vol. 3, no. 3, pp. 2789–2797, 2019.

E. B. Santoso and A. Nugroho, “Analisis Sentimen Calon Presiden Indonesia 2019 Berdasarkan Komentar Publik Di Facebook,” Eksplora Inform., vol. 9, no. 1, pp. 60–69, 2019, doi: 10.30864/eksplora.v9i1.254.

R. Safitri, N. Alfira, D. Tamitiadini, W. Dewi, and N. Febriani, ANALISIS SENTIMEN: METODE ALTERNATIF PENELITIAN BIG DATA. Universitas Brawijaya Press, 2021.

D. P. Santoso and W. Wibowo, “Analisis Sentimen Ulasan Aplikasi Buzzbreak Menggunakan Metode Naïve Bayes Classifier pada Situs Google Play Store,” J. Sains dan Seni ITS, vol. 11, no. 2, 2022, doi: 10.12962/j23373520.v11i2.72534.

H. Tuhuteru and A. Iriani, “Analisis Sentimen Perusahaan Listrik Negara Cabang Ambon Menggunakan Metode Support Vector Machine dan Naive Bayes Classifier,” J. Inform. J. Pengemb. IT, vol. 3, no. 3, pp. 394–401, 2018, doi: 10.30591/jpit.v3i3.977.

M. I. Petiwi, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Gofood Berdasarkan Twitter Menggunakan Metode Naïve Bayes dan Support Vector Machine,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 542, 2022, doi: 10.30865/mib.v6i1.3530.

T. M. Permata Aulia, N. Arifin, and R. Mayasari, “Perbandingan Kernel Support Vector Machine (Svm) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19,” SINTECH (Science Inf. Technol. J., vol. 4, no. 2, pp. 139–145, 2021, doi: 10.31598/sintechjournal.v4i2.762.

A. Erfina, E. S. Basryah, A. Saepulrohman, and D. Lestari, “Analisis Sentimen Aplikasi Pembelajaran Online Di Play Store Pada Masa Pandemi Covid-19 Menggunakan Algoritma Support Vector Machine (Svm),” Semin. Nas. Inform., vol. 1, no. 1, pp. 145–152, 2020, [Online]. Available: http://jurnal.upnyk.ac.id/index.php/semnasif/article/view/4094

P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 147, 2021, doi: 10.25126/jtiik.0813944.

F. F. Irfani, “Analisis Sentimen Review Aplikasi Ruangguru Menggunakan Algoritma Support Vector Machine,” JBMI (Jurnal Bisnis, Manajemen, dan Inform., vol. 16, no. 3, pp. 258–266, 2020, doi: 10.26487/jbmi.v16i3.8607.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Ulasan Aplikasi Wetv Untuk Peningkatan Layanan Menggunakan Metode Support Vector Machine

Dimensions Badge
Article History
Submitted: 2023-04-09
Published: 2023-04-30
Abstract View: 814 times
PDF Download: 624 times
How to Cite
Abdillah, R., Haerani, E., & Candra, R. (2023). Analisis Sentimen Ulasan Aplikasi Wetv Untuk Peningkatan Layanan Menggunakan Metode Support Vector Machine. Journal of Information System Research (JOSH), 4(3), 865-873. https://doi.org/10.47065/josh.v4i3.3353
Issue
Section
Articles

Most read articles by the same author(s)