Sistem Klasifikasi Penyakit Jantung Menggunakan Teknik Pendekatan SMOTE Pada Algoritma Modified K-Nearest Neighbor
Abstract
The heart is a vital organ that plays a crucial role in pumping oxygenated blood and nutrients throughout the body. Heart disease refers to damage to the heart that can occur in various forms, caused by infections or congenital abnormalities. The World Health Organization (WHO) reports nearly 17.9 million deaths each year due to heart disease. In Indonesia, the prevalence of heart disease is around 1.5%, meaning that in 2018, approximately 15 out of 1,000 people, or nearly 2,784,060 individuals, were affected by this disease, according to the Basic Health Research data (Riskesdas) 2018. Many people have limited knowledge about heart health, leading to a lack of awareness of their heart conditions. This can be attributed to a lack of understanding regarding the importance of medical checkups related to heart health. Modified K-Nearest Neighbors (MKNN) is one of the data mining methods applied for classifying the risk of heart disease. The research utilized data obtained from the UCI dataset repository, which consists of 918 records with 12 attributes. To balance the imbalanced dataset with minority classes, the Synthetic Minority Over-sampling Technique (SMOTE) approach was used to generate new synthetic samples from the minority class. The objective of developing a web-based system for heart disease classification is to assist the public in assessing their risk of heart disease as early as possible, enabling them to take preventive actions sooner. The accuracy results of the MKNN algorithm with a 90:10 ratio are 80.37%, while with the MKNN+SMOTE approach, the accuracy increased to 84.00%. The use of the SMOTE approach improved the accuracy of low-performing data.
Downloads
References
M. A. Bianto, K. Kusrini, and S. Sudarmawan, “Perancangan Sistem Klasifikasi Penyakit Jantung Mengunakan Naïve Bayes,” Creat. Inf. Technol. J., vol. 6, no. 1, p. 75, 2020, doi: 10.24076/citec.2019v6i1.231.
A. B. Wibisono and A. Fahrurozi, “Perbandingan Algoritma Klasifikasi Dalam Pengklasifikasian Data Penyakit Jantung Koroner,” J. Ilm. Teknol. dan Rekayasa, vol. 24, no. 3, pp. 161–170, 2019, doi: 10.35760/tr.2019.v24i3.2393.
Alodokter, “Penyakit Jantung,” 2019,
A. Nurmasani and Y. Pristyanto, “Algoritme Stacking Untuk Klasifikasi Penyakit Jantung Pada Dataset Imbalanced Class,” Pseudocode, vol. 8, no. 1, pp. 21–26, 2021, doi: 10.33369/pseudocode.8.1.21-26.
World Health Organizatotion, “Cardiovascular diseases,” 2021.
Tim Riskesdas, “Laporan Kesehatan Nasional RISKESDES 2018,” Indonesia, 2019.
Kementerian Kesehatan Republik Indonesia, “Penyakit Jantung Koroner Didominasi Masyarakat Kota,” 2021
P. D. Putra, S. Sukemi, and D. P. Rini, “Peningkatan Akurasi Klasifikasi Backpropagation Menggunakan Artificial Bee Colony dan K-NN Pada Penyakit Jantung,” J. Media Inform. Budidarma, vol. 5, no. 1, p. 208, 2021, doi: 10.30865/mib.v5i1.2634.
A. Ariani and S. Samsuryadi, “Classification of Kidney Disease Using Genetic Modified Knn and Artificial Bee Colony Algorithm,” Sinergi, vol. 25, no. 2, p. 177, 2021, doi: 10.22441/sinergi.2021.2.009.
J. Patel, A. A. Khaked, J. Patel, and J. Patel, “Heart Disease Prediction Using Machine Learning,” Lect. Notes Networks Syst., vol. 203 LNNS, no. 3, pp. 653–665, 2021, doi: 10.1007/978-981-16-0733-2_46.
E. Prasetyo and B. Prasetiyo, “Increased Classification Accuracy C4 . 5 Algorithm Using Bagging Techniques in Diagnosing Heart Disease,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 5, pp. 1035–1040, 2020, doi: 10.25126/jtiik.202072379.
Y. Pratama, A. Prayitno, D. Nazrian, N. Aini, Y. R. R, and E. Rasywir, “BULLETIN OF COMPUTER SCIENCE RESEARCH Klasifikasi Penyakit Gagal Jantung Menggunakan Algoritma K-Nearest Neighbor,” vol. 3, no. 1, pp. 52–56, 2022, doi: 10.47065/bulletincsr.v3i1.203.
A. N. Sari and S. Alfionita, “Klasifikasi Penyakit Jantung Menggunakan Metode Naïve Bayes,” AMRI (Analisa Metod. Rekayasa Inform., vol. 1, no. 1, pp. 22–26, 2022, doi: 10.12487/AMRI.v1i1.xxxxx.
R. Annisa, “Analisis Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi Penderita Penyakit Jantung,” J. Tek. Inform. Kaputama, vol. 3, no. 1, pp. 22–28, 2019.
D. A. Ryfai, N. Hidayat, and E. Santoso, “Klasifikasi Tingkat Resiko Serangan Penyakit Jantung menggunakan Metode K-Nearest Neighbor,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 10, pp. 4701–4707, 2022.
S. M. S. Shah, F. A. Shah, S. A. Hussain, and S. Batool, “Support Vector Machines-based Heart Disease Diagnosis using Feature Subset, Wrapping Selection and Extraction Methods,” Comput. Electr. Eng., vol. 84, p. 106628, 2020, doi: 10.1016/j.compeleceng.2020.106628.
B. Ismanto and N. Amalia, “Peningkatan Akurasi Pada Modified K-NN Untuk Klasifikasi Pengajuan Kredit Koperasi Dengan Menggunakan Algoritma Genetika,” IC-Tech, vol. 3, no. 2, pp. 66–70, 2018.
M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the class imbalance problem in convolutional neural networks,” Neural Networks, vol. 106, no. October 2017, pp. 249–259, 2018, doi: 10.1016/j.neunet.2018.07.011.
D. Dablain, B. Krawczyk, and N. V. Chawla, “DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data,” IEEE Trans. Neural Networks Learn. Syst., vol. PP, pp. 1–15, 2022, doi: 10.1109/TNNLS.2021.3136503.
D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.
Y. Yin, L. Long, and X. Deng, “Dynamic Data Mining of Sensor Data,” IEEE Access, vol. 8, pp. 41637–41648, 2020, doi: 10.1109/ACCESS.2020.2976699.
Okfalisa, I. Gazalba, Mustakim, and N. G. I. Reza, “Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification,” 2017 2nd Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. because, vol. 2018-Janua, pp. 294–298, 2018, doi: 10.1109/ICITISEE.2017.8285514.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Sistem Klasifikasi Penyakit Jantung Menggunakan Teknik Pendekatan SMOTE Pada Algoritma Modified K-Nearest Neighbor
Pages: 274−284
Copyright (c) 2023 Fitria Novitasari, Elin Haerani, Alwis Nazir, Jasril, Fitri Insani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).