Sistem Klasifikasi Penyakit Jantung Menggunakan Teknik Pendekatan SMOTE Pada Algoritma Modified K-Nearest Neighbor


  • Fitria Novitasari * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Elin Haerani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Alwis Nazir Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Jasril Jasril Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fitri Insani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Heart disease; Classification; Data mining; SMOTE

Abstract

The heart is a vital organ that plays a crucial role in pumping oxygenated blood and nutrients throughout the body. Heart disease refers to damage to the heart that can occur in various forms, caused by infections or congenital abnormalities. The World Health Organization (WHO) reports nearly 17.9 million deaths each year due to heart disease. In Indonesia, the prevalence of heart disease is around 1.5%, meaning that in 2018, approximately 15 out of 1,000 people, or nearly 2,784,060 individuals, were affected by this disease, according to the Basic Health Research data (Riskesdas) 2018. Many people have limited knowledge about heart health, leading to a lack of awareness of their heart conditions. This can be attributed to a lack of understanding regarding the importance of medical checkups related to heart health. Modified K-Nearest Neighbors (MKNN) is one of the data mining methods applied for classifying the risk of heart disease. The research utilized data obtained from the UCI dataset repository, which consists of 918 records with 12 attributes. To balance the imbalanced dataset with minority classes, the Synthetic Minority Over-sampling Technique (SMOTE) approach was used to generate new synthetic samples from the minority class. The objective of developing a web-based system for heart disease classification is to assist the public in assessing their risk of heart disease as early as possible, enabling them to take preventive actions sooner. The accuracy results of the MKNN algorithm with a 90:10 ratio are 80.37%, while with the MKNN+SMOTE approach, the accuracy increased to 84.00%. The use of the SMOTE approach improved the accuracy of low-performing data.

Downloads

Download data is not yet available.

References

M. A. Bianto, K. Kusrini, and S. Sudarmawan, “Perancangan Sistem Klasifikasi Penyakit Jantung Mengunakan Naïve Bayes,” Creat. Inf. Technol. J., vol. 6, no. 1, p. 75, 2020, doi: 10.24076/citec.2019v6i1.231.

A. B. Wibisono and A. Fahrurozi, “Perbandingan Algoritma Klasifikasi Dalam Pengklasifikasian Data Penyakit Jantung Koroner,” J. Ilm. Teknol. dan Rekayasa, vol. 24, no. 3, pp. 161–170, 2019, doi: 10.35760/tr.2019.v24i3.2393.

Alodokter, “Penyakit Jantung,” 2019,

A. Nurmasani and Y. Pristyanto, “Algoritme Stacking Untuk Klasifikasi Penyakit Jantung Pada Dataset Imbalanced Class,” Pseudocode, vol. 8, no. 1, pp. 21–26, 2021, doi: 10.33369/pseudocode.8.1.21-26.

World Health Organizatotion, “Cardiovascular diseases,” 2021.

Tim Riskesdas, “Laporan Kesehatan Nasional RISKESDES 2018,” Indonesia, 2019.

Kementerian Kesehatan Republik Indonesia, “Penyakit Jantung Koroner Didominasi Masyarakat Kota,” 2021

P. D. Putra, S. Sukemi, and D. P. Rini, “Peningkatan Akurasi Klasifikasi Backpropagation Menggunakan Artificial Bee Colony dan K-NN Pada Penyakit Jantung,” J. Media Inform. Budidarma, vol. 5, no. 1, p. 208, 2021, doi: 10.30865/mib.v5i1.2634.

A. Ariani and S. Samsuryadi, “Classification of Kidney Disease Using Genetic Modified Knn and Artificial Bee Colony Algorithm,” Sinergi, vol. 25, no. 2, p. 177, 2021, doi: 10.22441/sinergi.2021.2.009.

J. Patel, A. A. Khaked, J. Patel, and J. Patel, “Heart Disease Prediction Using Machine Learning,” Lect. Notes Networks Syst., vol. 203 LNNS, no. 3, pp. 653–665, 2021, doi: 10.1007/978-981-16-0733-2_46.

E. Prasetyo and B. Prasetiyo, “Increased Classification Accuracy C4 . 5 Algorithm Using Bagging Techniques in Diagnosing Heart Disease,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 5, pp. 1035–1040, 2020, doi: 10.25126/jtiik.202072379.

Y. Pratama, A. Prayitno, D. Nazrian, N. Aini, Y. R. R, and E. Rasywir, “BULLETIN OF COMPUTER SCIENCE RESEARCH Klasifikasi Penyakit Gagal Jantung Menggunakan Algoritma K-Nearest Neighbor,” vol. 3, no. 1, pp. 52–56, 2022, doi: 10.47065/bulletincsr.v3i1.203.

A. N. Sari and S. Alfionita, “Klasifikasi Penyakit Jantung Menggunakan Metode Naïve Bayes,” AMRI (Analisa Metod. Rekayasa Inform., vol. 1, no. 1, pp. 22–26, 2022, doi: 10.12487/AMRI.v1i1.xxxxx.

R. Annisa, “Analisis Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi Penderita Penyakit Jantung,” J. Tek. Inform. Kaputama, vol. 3, no. 1, pp. 22–28, 2019.

D. A. Ryfai, N. Hidayat, and E. Santoso, “Klasifikasi Tingkat Resiko Serangan Penyakit Jantung menggunakan Metode K-Nearest Neighbor,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 10, pp. 4701–4707, 2022.

S. M. S. Shah, F. A. Shah, S. A. Hussain, and S. Batool, “Support Vector Machines-based Heart Disease Diagnosis using Feature Subset, Wrapping Selection and Extraction Methods,” Comput. Electr. Eng., vol. 84, p. 106628, 2020, doi: 10.1016/j.compeleceng.2020.106628.

B. Ismanto and N. Amalia, “Peningkatan Akurasi Pada Modified K-NN Untuk Klasifikasi Pengajuan Kredit Koperasi Dengan Menggunakan Algoritma Genetika,” IC-Tech, vol. 3, no. 2, pp. 66–70, 2018.

M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the class imbalance problem in convolutional neural networks,” Neural Networks, vol. 106, no. October 2017, pp. 249–259, 2018, doi: 10.1016/j.neunet.2018.07.011.

D. Dablain, B. Krawczyk, and N. V. Chawla, “DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data,” IEEE Trans. Neural Networks Learn. Syst., vol. PP, pp. 1–15, 2022, doi: 10.1109/TNNLS.2021.3136503.

D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.

Y. Yin, L. Long, and X. Deng, “Dynamic Data Mining of Sensor Data,” IEEE Access, vol. 8, pp. 41637–41648, 2020, doi: 10.1109/ACCESS.2020.2976699.

Okfalisa, I. Gazalba, Mustakim, and N. G. I. Reza, “Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification,” 2017 2nd Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. because, vol. 2018-Janua, pp. 294–298, 2018, doi: 10.1109/ICITISEE.2017.8285514.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Sistem Klasifikasi Penyakit Jantung Menggunakan Teknik Pendekatan SMOTE Pada Algoritma Modified K-Nearest Neighbor

Dimensions Badge
Article History
Submitted: 2023-06-10
Published: 2023-06-29
Abstract View: 557 times
PDF Download: 361 times
How to Cite
Novitasari, F., Haerani, E., Nazir, A., Jasril, J., & Insani, F. (2023). Sistem Klasifikasi Penyakit Jantung Menggunakan Teknik Pendekatan SMOTE Pada Algoritma Modified K-Nearest Neighbor. Building of Informatics, Technology and Science (BITS), 5(1), 274−284. https://doi.org/10.47065/bits.v5i1.3610
Issue
Section
Articles

Most read articles by the same author(s)

1 2 3 > >>