Clustering Data Penduduk Menggunakan Algoritma K-Means


  • Tomi Ikhsan Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Elin Haerani * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fitri Wulandari Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fadhilah Syafria Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Economic Inequality; K-Means Clustering; Data Clustering; Davies-Bouldin Index (DBI); Targeted Policies

Abstract

Economic inequality is still a crucial factor facing Indonesia today, from big cities to remote villages, economic inequality is still a major problem. Bina Baru Village is no exception, a village inhabited by 5,760 people with a total of 1,742 families, spread across 30 neighbourhood associations (RT) and 8 community associations (RW). Various efforts are made to overcome the problem of economic inequality, one of which is by channeling assistance or providing policies that are right on target. One of the steps to overcome this problem is to group population data in Bina Baru village using the K-Means Clustering method which aims to determine the economic level of families in the region, so that local governments can more accurately make policies on the problem of economic inequality that occurs. The data used comes from a questionnaire of 1,005 family data with 64 attributes and 1,005 individual data with 84 attributes. The application of the k-means algorithm is carried out using python, also using DBI (Davies-Bouldin Index) to determine the optimum k value. In this study, the optimal k value is 3 clusters. Based on testing, it is found that Cluster 0 represents households with medium economic conditions, cluster 1 represents groups with better economic conditions and Cluster 2 is a group of households with low economic conditions. By clustering the population's economy, it is hoped that it can help stakeholders to provide targeted policies.

Downloads

Download data is not yet available.

References

Amelia, F., Iskandar, I., Kurnia Gusti, S., & Haerani, E. (2023). Clustering Keluarga Miskin Desa Bina Baru Dengan Metode K-Medoids. Krea-Tif: Jurnal Teknik Informatika, 11(1), 1–13. https://doi.org/10.32832/krea-tif.v11i1.14104

Bahtiar, D. (2023). Pemetaan Penduduk Penerima Bantuan Sosial Desa Waru Jaya Menggunakan Algoritma K-Means Clustering. Scientia Sacra: Jurnal Sains, 3(2), 29–39. https://doi.org/https://doi.org/10.31328/jointecs.v4i1.998

Bustami, B., Mahara, R., Ahmadian, H., Wahyuni, S., & AR, K. (2022). Analisis Clustering Penduduk Miskin Di Provinsi Aceh Menggunakan Algoritma K-Means Dan X-Means. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 5(1), 26–35. https://doi.org/10.32672/jnkti.v5i1.3961

Farissa, R. A., Mayasari, R., & Umaidah, Y. (2021). Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient di Puskesmas Karangsambung. Journal of Applied Informatics and Computing, 5(2), 109–116. https://doi.org/10.30871/jaic.v5i1.3237

Febriansyah, F., & Muntari, S. (2023). Penerapan Algoritma K-Means untuk Klasterisasi Penduduk Miskin pada Kota Pagar Alam. Jurnal Informatika Sunan Kalijaga, 8(1), 66–77. https://doi.org/https://doi.org/10.14421/jiska.2023.8.1.66-77

Fitriyadi, A. upi. (2021). Analisis Algoritma K-Means dan K-Medoids Untuk Clustering Data Kinerja Karyawan Pada Perusahaan Perumahan Nasional. Kilat, 10(1), 157–168. https://doi.org/10.33322/kilat.v10i1.1174

Hendrastuty, N. (2024). Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa. Jurnal Ilmiah Informatika Dan Ilmu Komputer (Jima-Ilkom), 3(1), 46–56. https://doi.org/10.58602/jima-ilkom.v3i1.26

Luchia, N. T., Handayani, H., & Hamdi, F. S. (2022). Perbandingan K-Means dan K-Medoids Pada Pengelompokan Data Miskin di Indonesia. Indonesian Journal of Machine Learning and Computer Science, 2(October), 35–41. https://doi.org/https://doi.org/10.57152/malcom.v2i2.422

R, N. N. F., Anggraeni, D. S., & Enri, U. (2022). Pengelompokkan Data Kemiskinan Provinsi Jawa Barat Menggunakan Algoritma K-Means dengan Silhouette Coefficient. Tematik, 9(1), 29–35. https://doi.org/10.38204/tematik.v9i1.901

Saputra, S. N., Haerani, E., Jasril, J., Oktavia, L., & Syafria, F. (2023). Penerapan Algoritma K - means Pada Cluster Penerima Bantuan Pangan Non Tunai (BPNT). Journal of Computer Engineering, System and Science, 8((2)), 438–449. https://doi.org/https://doi.org/10.24114/cess.v8i2.48026

Sari, Y. A. (2021). Pengaruh Upah Minimum Tingkat Pengangguran Terbuka Dan Jumlah Penduduk Terhadap Kemiskinan Di Provinsi Jawa Tengah. Equilibrium : Jurnal Ilmiah Ekonomi, Manajemen Dan Akuntansi, 10(2), 121–130. https://doi.org/10.35906/je001.v10i2.785

Siregar, H. A., Azlan, A., & Lumban Gaol, N. Y. (2023). Penerapan Data Mining Pada Penjualan Rumah Makan Kasih Ibu Menggunakan Metode K-Means Clustering. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 2(5), 750. https://doi.org/10.53513/jursi.v2i5.8955

Sitorus, Z., & Suhartika. (2024). Penerapan Data Mining Untuk Clustering Penduduk Miskin Di Kota Tanjungbalai Menggunakan Metode Algoritma K-Means. Journal of Science and Social Research, 4307(1), 212–218. https://doi.org/https://doi.org/10.54314/jssr.v7i1.1732

Supriyadi, A., Triayudi, A., & Sholihati, I. D. (2021). Perbandingan Algoritma K-Means Dengan K-Medoids Pada Pengelompokan Armada Kendaraan Truk Berdasarkan Produktivitas. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 6(2), 229–240. https://doi.org/10.29100/jipi.v6i2.2008

Syaputri, D., Noprita, P. H., & Romelah, S. (2021). Implementasi Algoritma K-Means untuk Pengelompokan Distribusi Sosial Ekonomi Masyarakat Berdasarkan Demografi Kependudukan. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 1(1), 1–6. https://doi.org/10.57152/malcom.v1i1.5

Taryadi, T. (2022). Klasterisasi Data Keluarga Pra Sejahtera Di Kota Pekalongan Dengan Metode K-Means Clustering. Jurnal Litbang Kota Pekalongan, 20(1), 70–76. https://doi.org/10.54911/litbang.v20i1.180

Triyana, M., Juita, R., & Suhendra, C. D. (2022). Penerapan Metode K-Means dalam Pengelompokan Data Penduduk Tidak Mampu di Distrik Oransbari. INFORMAL: Informatics Journal, 7(3), 220. https://doi.org/10.19184/isj.v7i3.34722

Utomo, W. (2021). The comparison of k-means and k-medoids algorithms for clustering the spread of the covid-19 outbreak in Indonesia. ILKOM Jurnal Ilmiah, 13(1), 31–35. https://doi.org/10.33096/ilkom.v13i1.763.31-35

Waruwu, A., Yetri, M., & Setiawan, F. (2023). Implementasi Data Mining Dalam Mengelompokkan Data penduduk Kurang Mampu Menggunakan Metode K-Means Clustering. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 2(6), 945. https://doi.org/10.53513/jursi.v2i6.8965


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Clustering Data Penduduk Menggunakan Algoritma K-Means

Dimensions Badge
Article History
Published: 2025-05-31
Abstract View: 1458 times
PDF Download: 1032 times
Issue
Section
Articles

Most read articles by the same author(s)

1 2 > >>