Analisis Sentimen Ulasan Aplikasi WeTV Untuk Peningkatan Layanan Menggunakan Metode K-Nearst Neighbor
Abstract
Online streaming applications are activities for watching movies that are very popular with the public, one of which is WeTV. WeTV is an online streaming that is used by the public as a medium of entertainment. The WeTV application has a rating of 4 out of 256 thousand reviews written by its users. The collection of reviews in the form of text can be collected and classified into negative responses, neutral responses, and negative responses. Positive responses are comments that are optimistic or supportive. Negative responses are comments on phrases or cases that do not support statements about related cases. Neutral responses are comments that are difficult to understand between negative or positive in nature to provide suggestions, sentences that have reviews from application users can be positive, negative and neutral, the data will go through a classification process using the K-Nearst Neighbor method. In this study, 12,000 reviews were used from the playstore. The research used the preprocessing stage, namely cleaning, case folding, tokenizing, normalization, stopword removal and steaming then to the TF-IDF stage and the final results will be tested with a confusion matrix using the Python programming language. The highest accuracy results from the testing process with a value of K = 3 in the dataset model 90% training data and 10% test data obtain an accuracy of 0.70%, precision 0.76%, recall 0.69%, f1-score 0.72% . Based on the results of the research that the K-Nearest Neighbor method is good in the process of identifying negative responses on WeTV.
Downloads
References
S. Sarnita, “APJII: Pengguna Internet Indonesia 215,63 Juta pada 2022-2023,” https://dataindonesia.id/. https://dataindonesia.id/digital/detail/apjii-pengguna-internet-indonesia-21563-juta-pada-20222023 (accessed Mar. 20, 2023).
K. Sistem, D. Produk, and P. Musyarakah, “Fakultas ekonomi dan bisnis islam,” vol. 5, no. 0355, pp. 18–20, 2014.
U. Kulsum, M. Jajuli, and N. Sulistiyowati, “Analisis Sentimen Aplikasi WETV di Google Play Store Menggunakan Algoritma Support Vector Machine,” J. Appl. Informatics Comput., vol. 6, no. 2, pp. 205–212, 2022, doi: 10.30871/jaic.v6i2.4802.
F. F. Irfani, “Analisis Sentimen Review Aplikasi Ruangguru Menggunakan Algoritma Support Vector Machine,” JBMI (Jurnal Bisnis, Manajemen, dan Inform., vol. 16, no. 3, pp. 258–266, 2020, doi: 10.26487/jbmi.v16i3.8607.
A. D. Adhi Putra, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, pp. 636–646, 2021, doi: 10.35957/jatisi.v8i2.962.
M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 3, pp. 269–274, 2019, doi: 10.33096/ilkom.v11i3.489.269-274.
S. Kamilia, “Analisis Sentimen Data Ulasan Menggunakan Algoritma Support Vector Machine (Studi Kasus: Aplikasi Iflix),” Universitas Islam Indonesia Yogyakarta, 2021.
S. Rahayu, Y. MZ, J. E. Bororing, and R. Hadiyat, “Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP,” Edumatic J. Pendidik. Inform., vol. 6, no. 1, pp. 98–106, 2022, doi: 10.29408/edumatic.v6i1.5433.
J. W. Iskandar and Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1120–1126, 2021, doi: 10.29207/resti.v5i6.3588.
M. S. Alrajak, I. Ernawati, and I. Nurlaili, “Analisis Sentimen Terhadap Pelayanan PT PLN di Jakarta pada Twitter dengan Algoritma K- Nearest Neighbor (K-NN),” Semin. Nas. Mhs. Ilmu Komput. dan Apl., vol. 1, no. 2, pp. 110–122, 2020.
A. A. Puspitasari, E. Santoso, and Indriati, “Klasifikasi Dokumen Tumbuhan Obat Menggunakan Metode Improved k-Nearest Neighbor,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 2, pp. 486–492, 2018.
Y. D. Pramudita, S. S. Putro, and N. Makhmud, “Klasifikasi Berita Olahraga Menggunakan Metode Naïve Bayes dengan Enhanced Confix Stripping Stemmer,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 3, p. 269, 2018, doi: 10.25126/jtiik.201853810.
M. Mihuandayani, E. Feriyanto, S. Syarham, and K. Kusrini, “Opinion Mining Pada Komentar Twitter E-Ktp Menggunakan Naive Bayes Classifier,” Semnasteknomedia Online, vol. 6, no. 1, pp. 1-2–25, 2018, [Online]. Available: https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/2052
I. Iwandini, A. Triayudi, and G. Soepriyono, “Analisa Sentimen Pengguna Transportasi Jakarta Terhadap Transjakarta Menggunakan Metode Naives Bayes dan K-Nearest Neighbor,” J. Inf. Syst. Res., vol. 4, no. 2, pp. 543–550, 2023, doi: 10.47065/josh.v4i2.2937.
A. P. N. April Lia Hananto, Bayu Priyatna, Agustia Hananto, Data Mining: Penerapan Algoritma (SVM, Naïve Bayes, K-NN) Dan Implementasi Menggunakan Rapid Miner. Bandung- Jawa Barat: CV. Media Sains Indonesia, 2023.
R. Puspita and A. Widodo, “Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS,” J. Inform. Univ. Pamulang, vol. 5, no. 4, p. 646, 2021, doi: 10.32493/informatika.v5i4.7622.
A. Y. Permana and H. Noviyani, “Komparasi Algoritma Naïve Bayes Dan K-Nearest Neighbor Dalam Melihat Analisis Sentimen Terhadap Vaksinasi Covid-19,” Pros. SAINTEK, vol. 1, no. 1, pp. 128–134, 2022.
M. A. Ferdina Kusumah, Nurjaidin, ANALISIS SISTEM PENDETEKSI WAJAH PADA GAMBAR DENGAN METODE K-NEAREST NEIGHBOR. Tanggerang Selatan: Pascal Books, 2021. doi: 978-623-5312-17-0.
S. Martha and E. Sulistianingsih INTISARI, “K Nearest Neighbor Dalam Imputasi Missing Data,” Bul. Ilm. Math. Stat. dan Ter., vol. 07, no. 1, pp. 9–14, 2018, [Online]. Available: http://archive.ics.uci.edu/ml/datas/Iris.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021, [Online]. Available: http://ejurnal.tunasbangsa.ac.id/index.php/jsakti/article/view/369
Yuyun, Nurul Hidayah, and Supriadi Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 820–826, 2021, doi: 10.29207/resti.v5i4.3146.
A. J. Putra, “Implementasi Metode Support Vector Machine Dalam Analisis Sentimen Pada Data Ulasan Twitter Vaksin Covid-19,” Dsp. Repos., 2021, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/34613%0Ahttps://dspace.uii.ac.id/bitstream/handle/123456789/34613/17522246 Andika Julianto Putra.pdf?sequence=1&isAllowed=y
M. Furqan, S. Sriani, and S. M. Sari, “Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia,” Techno.Com, vol. 21, no. 1, pp. 51–60, 2022, doi: 10.33633/tc.v21i1.5446.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Ulasan Aplikasi WeTV Untuk Peningkatan Layanan Menggunakan Metode K-Nearst Neighbor
Pages: 855-864
Copyright (c) 2023 Nurkholimah Faridhotun, Elin Haerani, Reski Mai Candra

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















