Analisis Sentimen Ulasan Aplikasi WeTV Untuk Peningkatan Layanan Menggunakan Metode K-Nearst Neighbor


  • Nurkholimah Faridhotun * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Elin Haerani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Reski Mai Candra Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Confusion Matrix; KNN; Preprocessing; TF-IDF; WeTV

Abstract

Online streaming applications are activities for watching movies that are very popular with the public, one of which is WeTV. WeTV is an online streaming that is used by the public as a medium of entertainment. The WeTV application has a rating of 4 out of 256 thousand reviews written by its users. The collection of reviews in the form of text can be collected and classified into negative responses, neutral responses, and negative responses. Positive responses are comments that are optimistic or supportive. Negative responses are comments on phrases or cases that do not support statements about related cases. Neutral responses are comments that are difficult to understand between negative or positive in nature to provide suggestions, sentences that have reviews from application users can be positive, negative and neutral, the data will go through a classification process using the K-Nearst Neighbor method. In this study, 12,000 reviews were used from the playstore. The research used the preprocessing stage, namely cleaning, case folding, tokenizing, normalization, stopword removal and steaming then to the TF-IDF stage and the final results will be tested with a confusion matrix using the Python programming language. The highest accuracy results from the testing process with a value of K = 3 in the dataset model 90% training data and 10% test data obtain an accuracy of 0.70%, precision 0.76%, recall 0.69%, f1-score 0.72% . Based on the results of the research that the K-Nearest Neighbor method is good in the process of identifying negative responses on WeTV.

Downloads

Download data is not yet available.

References

S. Sarnita, “APJII: Pengguna Internet Indonesia 215,63 Juta pada 2022-2023,” https://dataindonesia.id/. https://dataindonesia.id/digital/detail/apjii-pengguna-internet-indonesia-21563-juta-pada-20222023 (accessed Mar. 20, 2023).

K. Sistem, D. Produk, and P. Musyarakah, “Fakultas ekonomi dan bisnis islam,” vol. 5, no. 0355, pp. 18–20, 2014.

U. Kulsum, M. Jajuli, and N. Sulistiyowati, “Analisis Sentimen Aplikasi WETV di Google Play Store Menggunakan Algoritma Support Vector Machine,” J. Appl. Informatics Comput., vol. 6, no. 2, pp. 205–212, 2022, doi: 10.30871/jaic.v6i2.4802.

F. F. Irfani, “Analisis Sentimen Review Aplikasi Ruangguru Menggunakan Algoritma Support Vector Machine,” JBMI (Jurnal Bisnis, Manajemen, dan Inform., vol. 16, no. 3, pp. 258–266, 2020, doi: 10.26487/jbmi.v16i3.8607.

A. D. Adhi Putra, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, pp. 636–646, 2021, doi: 10.35957/jatisi.v8i2.962.

M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 3, pp. 269–274, 2019, doi: 10.33096/ilkom.v11i3.489.269-274.

S. Kamilia, “Analisis Sentimen Data Ulasan Menggunakan Algoritma Support Vector Machine (Studi Kasus: Aplikasi Iflix),” Universitas Islam Indonesia Yogyakarta, 2021.

S. Rahayu, Y. MZ, J. E. Bororing, and R. Hadiyat, “Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP,” Edumatic J. Pendidik. Inform., vol. 6, no. 1, pp. 98–106, 2022, doi: 10.29408/edumatic.v6i1.5433.

J. W. Iskandar and Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1120–1126, 2021, doi: 10.29207/resti.v5i6.3588.

M. S. Alrajak, I. Ernawati, and I. Nurlaili, “Analisis Sentimen Terhadap Pelayanan PT PLN di Jakarta pada Twitter dengan Algoritma K- Nearest Neighbor (K-NN),” Semin. Nas. Mhs. Ilmu Komput. dan Apl., vol. 1, no. 2, pp. 110–122, 2020.

A. A. Puspitasari, E. Santoso, and Indriati, “Klasifikasi Dokumen Tumbuhan Obat Menggunakan Metode Improved k-Nearest Neighbor,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 2, pp. 486–492, 2018.

Y. D. Pramudita, S. S. Putro, and N. Makhmud, “Klasifikasi Berita Olahraga Menggunakan Metode Naïve Bayes dengan Enhanced Confix Stripping Stemmer,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 3, p. 269, 2018, doi: 10.25126/jtiik.201853810.

M. Mihuandayani, E. Feriyanto, S. Syarham, and K. Kusrini, “Opinion Mining Pada Komentar Twitter E-Ktp Menggunakan Naive Bayes Classifier,” Semnasteknomedia Online, vol. 6, no. 1, pp. 1-2–25, 2018, [Online]. Available: https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/2052

I. Iwandini, A. Triayudi, and G. Soepriyono, “Analisa Sentimen Pengguna Transportasi Jakarta Terhadap Transjakarta Menggunakan Metode Naives Bayes dan K-Nearest Neighbor,” J. Inf. Syst. Res., vol. 4, no. 2, pp. 543–550, 2023, doi: 10.47065/josh.v4i2.2937.

A. P. N. April Lia Hananto, Bayu Priyatna, Agustia Hananto, Data Mining: Penerapan Algoritma (SVM, Naïve Bayes, K-NN) Dan Implementasi Menggunakan Rapid Miner. Bandung- Jawa Barat: CV. Media Sains Indonesia, 2023.

R. Puspita and A. Widodo, “Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS,” J. Inform. Univ. Pamulang, vol. 5, no. 4, p. 646, 2021, doi: 10.32493/informatika.v5i4.7622.

A. Y. Permana and H. Noviyani, “Komparasi Algoritma Naïve Bayes Dan K-Nearest Neighbor Dalam Melihat Analisis Sentimen Terhadap Vaksinasi Covid-19,” Pros. SAINTEK, vol. 1, no. 1, pp. 128–134, 2022.

M. A. Ferdina Kusumah, Nurjaidin, ANALISIS SISTEM PENDETEKSI WAJAH PADA GAMBAR DENGAN METODE K-NEAREST NEIGHBOR. Tanggerang Selatan: Pascal Books, 2021. doi: 978-623-5312-17-0.

S. Martha and E. Sulistianingsih INTISARI, “K Nearest Neighbor Dalam Imputasi Missing Data,” Bul. Ilm. Math. Stat. dan Ter., vol. 07, no. 1, pp. 9–14, 2018, [Online]. Available: http://archive.ics.uci.edu/ml/datas/Iris.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021, [Online]. Available: http://ejurnal.tunasbangsa.ac.id/index.php/jsakti/article/view/369

Yuyun, Nurul Hidayah, and Supriadi Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 820–826, 2021, doi: 10.29207/resti.v5i4.3146.

A. J. Putra, “Implementasi Metode Support Vector Machine Dalam Analisis Sentimen Pada Data Ulasan Twitter Vaksin Covid-19,” Dsp. Repos., 2021, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/34613%0Ahttps://dspace.uii.ac.id/bitstream/handle/123456789/34613/17522246 Andika Julianto Putra.pdf?sequence=1&isAllowed=y

M. Furqan, S. Sriani, and S. M. Sari, “Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia,” Techno.Com, vol. 21, no. 1, pp. 51–60, 2022, doi: 10.33633/tc.v21i1.5446.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Ulasan Aplikasi WeTV Untuk Peningkatan Layanan Menggunakan Metode K-Nearst Neighbor

Dimensions Badge
Article History
Submitted: 2023-04-09
Published: 2023-04-30
Abstract View: 754 times
PDF Download: 454 times
How to Cite
Faridhotun, N., Haerani, E., & Candra, R. M. (2023). Analisis Sentimen Ulasan Aplikasi WeTV Untuk Peningkatan Layanan Menggunakan Metode K-Nearst Neighbor. Journal of Information System Research (JOSH), 4(3), 855-864. https://doi.org/10.47065/josh.v4i3.3349
Issue
Section
Articles

Most read articles by the same author(s)