Penerapan Algoritma Naïve Bayes Classifier Dalam Klasifikasi Status Gizi Balita dengan Pengujian K-Fold Cross Validation
Abstract
Nutritional status is a condition related to nutrition that can be measured and is the result of a balance between nutritional needs in the body and nutritional intake from food. In Indonesia, there are still many nutritional problems such as malnutrition and other nutritional problems. This research will use the Naïve Bayes Classifier algorithm with K-Fold Cross Validation testing. The data used is data on the nutritional status of toddlers in August 2022 at the Rambah Samo I Health Center. Attributes in this study include Gender, Birth Weight, Birth Height, Age at Measurement, Weight, Height, ZS BB/U, BB/U, ZS TB/U, and TB/U. Determination of the nutritional status of toddlers in this study was based on the BB/TB index which consisted of 6 classes, namely severely wasted, wasted, normal, possible risk of overweight, overweight, and obese. From the research conducted, it was found that the Naïve Bayes Classifier algorithm with K-Fold Cross Validation can correctly classify the nutritional status of toddlers. From data processing using 10-Fold Cross Validation on the Naïve Bayes Classifier algorithm, it is known that the highest accuracy value is 82.94% in the 5th iteration, while the lowest accuracy value is 65.88% in 6th iteration. With an average overall accuracy value of 75.47%. Meanwhile, the average precision value obtained is 81.36% and the average recall value is 75.47%.
Downloads
References
W. Hadikristanto and T. D. Pungkas, “Klasifikasi Status Gizi Orang Dewasa Menggunakan Algoritma Naive Bayes (Studi Kasus Klinik Bhakti Mulia Cikarang),” SIGMA - Jurnal Teknologi Pelita Bangsa, vol. 9, 2019.
M. Platinum, “Pentingnya Memperhatikan Tercukupinya Kebutuhan Gizi pada Anak,” https://morinagaplatinum.com/id/milestone/pentingnya-memperhatikan-tercukupinya-kebutuhan-gizi-pada-ank, Aug. 24, 2021.
A. M. Safitri, “6 Masalah Gizi yang Paling Sering Terjadi di Indonesia, dari Balita Hingga Dewasa,” https://hellosehat.com/nutrisi/fakta-gizi/masalah-gizi-di-indonesia/, 2023.
H. Yulian, “Inilah 5 Masalah Gizi yang Rentan Dialami Anak Indonesia,” https://www.momsmoney.id/news/inilah-5-masalah-gizi-yang-rentan-dialami-anak-indonesia, 2022.
N. Azizah, “Masalah Gizi Anak di Indonesia Masih Tinggi,” https://www.republika.co.id/berita/qye6fm463/masalah-gizi-anak-di-indonesia-masih-tinggi, 2021.
W. Mutika and D. Syamsul, “Analisis Permasalahan Status Gizi Kurang pada Balita di Puskesmas Teupah Selatan Kabupaten Simeuleu,” Jurnal Kesehatan Global, vol. 1, no. 3, pp. 127–136, 2018.
D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 2, pp. 437–444, Apr. 2020, doi: 10.30865/mib.v4i2.2080.
A. Tarigan, Mustakim, E. Wahyudi, and J. Adhiva, “Klasifikasi Status Kesejahteraan Rumah Tangga di Kabupaten Siak Menggunakan Algoritma Naive Bayes Classifier,” Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI), 2019.
E. Darnila, M. Maryana, and M. Azmi, “Aplikasi Klasifikasi Status Gizi Balita Menggunakan Metode Naive Bayes Berbasis Android,” METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi , vol. 5, no. 2, 2021, doi: 10.46880/jmika.Vol5No2.pp135-141.
M. A. Bianto, Kusrini, and Sudarmawan, “Perancangan Sistem Klasifikasi Penyakit Jantung Mengunakan Naïve Bayes,” Citec Journal, vol. 6, no. 1, 2019.
N. Y. Paramitha, A. Nuryaman, A. Faisol, E. Setiawan, and D. E. Nurvazly, “Klasifikasi Penyakit Stroke Menggunakan Metode Naïve Bayes,” Jurnal Siger Matematika, vol. 04, no. 01, 2023, [Online]. Available: https://www.kaggle.com/datasets/zzettrkalpakbal/full-filled-
N. D. Lika, “PENERAPAN ALGORITMA NBC UNTUK KLASIFIKASI TINGKAT RESIKO PENYAKIT DIABETES MELLITUS,” Jurnal Perencanaan, Sains, Teknologi, dan Komputer (JuPerSaTeK), vol. 3, no. 1, pp. 45–54, 2020.
M. Y. Haffandi, E. Haerani, F. Syafria, and L. Oktavia, “KLASIFIKASI PENYAKIT PARU-PARU DENGAN MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER,” Jurnal Teknik Informasi dan Komputer (Tekinkom), vol. 5, no. 2, pp. 176–186, Dec. 2022, doi: 10.37600/tekinkom.v5i2.649.
T. Arifin and D. Ariesta, “PREDIKSI PENYAKIT GINJAL KRONIS MENGGUNAKAN ALGORITMA NAIVE BAYES CLASSIFIER BERBASIS PARTICLE SWARM OPTIMIZATION,” Jurnal Tekno Insentif, vol. 13, no. 1, pp. 26–30, Apr. 2019, doi: 10.36787/jti.v13i1.97.
A. Hutapea, M. T. Furqon, and I. Indriati, “Penerapan Algoritme Modified K-Nearest Neighbour Pada Pengklasifikasian Penyakit Kejiwaan Skizofrenia,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 10, pp. 3957–3961, 2018, [Online]. Available: http://j-ptiik.ub.ac.id
R. R. R. Arisandi, B. Warsito, and A. R. Hakim, “Aplikasi Naive Bayes Classifier (NBC) pada Klasifikasi Status Gizi Balita Stunting dengan Pengujian K-Fold Cross Validation,” JURNAL GAUSSIAN, vol. 11, no. 1, pp. 130–139, 2022, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/
E. Yanti, E. Apriyeni, D. C. Rahayuningrum, Ibrahim, and D. Ayu K, “STATUS GIZI BAYI (6-12 bulan) DITINJAU DARI BERAT BADAN LAHIR DI POSYANDU BOUGENVILE I WILAYAH KERJA PUSKESMAS ANDALAS,” Jurnal Kesehatan Medika Saintika, vol. 13, no. 1, 2022, doi: 10.30633/jkms.v13i1.1388.
S. Sutrio and M. Lupiana, “Berat Badan dan Panjang Badan Lahir Meningkatkan Kejadian Stunting,” Jurnal Kesehatan Metro Sai Wawai, vol. 12, no. 1, pp. 21–29, 2019.
Sukmawati, Hendrayati, Chaerunnimah, and Nurhumaira, “STATUS GIZI IBU SAAT HAMIL, BERAT BADAN LAHIR BAYI DENGAN STUNTING PADA BALITA,” Media Gizi Pangan, vol. 25, 2018.
L. Abdullah, R. Tamin, and A. A. Qashlim, “KLASIFIKASI PENERIMAAN BEASISWA MENGGUNAKAN ALGORITMA NAIVE BAYES DI UNIVERSITAS AL ASYARIAH MANDAR KABUPATEN POLEWALI MANDAR,” Journal Peqguruang: Conference Series, vol. 3, no. 1, p. 183, May 2021, doi: 10.35329/jp.v3i1.1399.
PERATURAN MENTERI KESEHATAN REPUBLIK INDONESIA NOMOR 2 TAHUN 2020 TENTANG STANDAR ANTROPOMETRI ANAK. 2020.
N. Hajar, N. Y. Setiawan, and F. A. Bachtiar, “Pengelompokan Mahasiswa untuk Pengajuan Bantuan Uang Kuliah Tunggal menggunakan Metode K-Means Clustering (Studi Kasus BEM FILKOM UB),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 5, pp. 2353–2361, 2022, [Online]. Available: http://j-ptiik.ub.ac.id
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma Naïve Bayes Classifier Dalam Klasifikasi Status Gizi Balita dengan Pengujian K-Fold Cross Validation
Pages: 578-586
Copyright (c) 2023 Nurainun Nurainun, Elin Haerani, Fadhilah Syafria, Lola Oktavia

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).