Analisis Algoritma Fuzzy C-Means Untuk Pengelompokan Data Keluarga


  • Wahyu Cahyadi Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Elin Haerani * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Alwis Nazir Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Iwan Iskandar Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Fuzzy C-Means; Xie-Beni; Fuzzy Partition Entropy; Fuzzy Cluster Index; Family Welfare

Abstract

Mapping the socio-economic conditions of the community plays a crucial role in supporting targeted development planning at the village level. This study aims to apply the Fuzzy C-Means (FCM) algorithm to cluster families in Bina Baru Village based on social, economic, and household environmental indicators. The variables used include family size, income sources, physical condition of the house, basic facilities, as well as monthly expenditure and income levels. This study uses population data from Bina Baru Village, consisting of 1,000 entries with 16 variables. The FCM algorithm was chosen for its ability to accommodate multiple degrees of membership (fuzzy membership), making it more adaptable in capturing the diversity and ambiguity of socio-economic characteristics. The results show that FCM produces two main clusters: Cluster 0, with 440 members, reflects families with middle to lower economic conditions, permanent housing, and adequate basic facilities; and Cluster 1, with 560 members, represents families with lower economic conditions, semi-permanent housing, and relatively smaller family sizes. Evaluation using the Xie–Beni index (35.4976), Fuzzy Partition Entropy (0.6843), and Fuzzy Cluster Index (0.4468) indicates that the two-cluster model has the best clustering quality compared to other numbers of clusters. Overall, the Fuzzy C-Means algorithm is effective in mapping variations in family welfare and can be used as a basis for formulating development policies and data-driven community empowerment programs in Bina Baru Village.

Downloads

Download data is not yet available.

References

Alasali, T., & Ortakci, Y. (2024). Clustering Techniques in Data Mining: A Survey of Methods, Challenges, and Applications. Computer Science. https://doi.org/10.53070/bbd.1421527

Amelia, F., Iskandar, I., Kurnia Gusti, S., & Haerani, E. (2023). Clustering Keluarga Miskin Desa Bina Baru Dengan Metode K-Medoids. Krea-Tif: Jurnal Teknik Informatika, 11(1), 1–13. https://doi.org/10.32832/krea-tif.v11i1.14104

An-naziz Safaat, W., Kurniawan, R., & Arie Wijaya, Y. (2024). Penerapan Data Mining Clustering Menggunakan Algoritma Fuzzy C-Means Pada Data Pencari Kerja Di Kabupaten Kuningan. JATI (Jurnal Mahasiswa Teknik Informatika), 8(2), 1507–1511. https://doi.org/10.36040/jati.v8i2.8411

Faried, M. A. F. (2022). Pengelompokan data kelas BPJS Kesehatan menggunakan metode Fuzzy C-Means (FCM). UNIVERSITAS ISLAM NEGERI SULTAN SYARIF KASIM RIAU .

Fazel Zarandi, M. H., Sotodian, S., & Castillo, O. (2021). A New Validity Index for Fuzzy-Possibilistic C-Means Clustering. Scientia Iranica, 0(0), 0–0. https://doi.org/10.24200/sci.2021.50287.1614

Hidayat, Y., Nazir, A., Candra, R. M., Sanjaya, S., & Syafria, F. (2023). Clustering Vaksinasi Penyakit Mulut dan Kuku Menggunakan Algoritma Fuzzy C-Means. Journal of Computer System and Informatics (JoSYC), 4(3), 587–593. https://doi.org/10.47065/josyc.v4i3.3416

Huddin, S., Haerani, E., & Oktavia, L. (2023). Penerapan Fuzzy C-Means Pada Klasterisasi Penerima Bantuan Pangan Non Tunai. Media Online), 4(1), 453–461. https://doi.org/10.30865/klik.v4i1.988

Kahar, N. F., Hadjaratie, L., Suhada, S., & Padiku, I. R. (2019). Implementasi Data Mining Dalam Penentuan Tingkat Kemiskinan Menggunakan Fuzzy C-Means. Jambura Journal of Informatics, 1(1), 27–36. https://doi.org/10.37905/jji.v1i1.2332

Kumar, M., & Bhardwaj, V. (2025). Evaluating Label Encoding and Preprocessing Techniques for Breast Cancer Prediction Using Machine Learning Algorithms. International Journal of Computational Intelligence Systems, 18(1), 218. https://doi.org/10.1007/s44196-025-00957-7

Kurniawati, V. (2022). Analisis clustering kemiskinan di Indonesia menggunakan algoritma Fuzzy C-Means dan Fuzzy Possibilistic C-Means. UNIVERSITAS LAMPUNG.

Muhammad, A., & Budianita, E. (2022). Pengelompokan Tingkat Kecanduan Game Online Menggunakan Algoritma Fuzzy C-Means. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 5(4), 601–610. https://doi.org/10.32672/jnkti.v5i4.4511

Mustakim, M., Aini, D. N., Batubara, A. U., Erkamim, Moh., & Legito, L. (2024). Fuzzy Clustering-Based Grouping for Mapping the Distribution of Student Success Data. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(2), 366–372. https://doi.org/10.57152/malcom.v3i2.1227

Novianti, F., Aisyah Yasmin, Y. R., & Novitasari, D. C. R. (2022). Penerapan Algoritma Fuzzy C-Means (FCM) dalam Pengelompokan Provinsi di Indonesia berdasarkan Indikator Penyakit Menular Manusia. JUMANJI (Jurnal Masyarakat Informatika Unjani), 6(1), 23. https://doi.org/10.26874/jumanji.v6i1.103

Rathee, J., Kaur, P., & Singh, A. (2022). Evaluating the performance of Fuzzy Clustering using different distance metrics for Image Segmentation. 2022 International Conference for Advancement in Technology (ICONAT), 1–5. https://doi.org/10.1109/ICONAT53423.2022.9725950

Sanusi, W., Zaky, A., & Afni, B. N. (2020). Analisis Fuzzy C-Means dan Penerapannya Dalam Pengelompokan Kabupaten/Kota di Provinsi Sulawesi Selatan Berdasarkan Faktor-faktor Penyebab Gizi Buruk. Journal of Mathematics, Computations, and Statistics, 2(1), 47. https://doi.org/10.35580/jmathcos.v2i1.12458

Sharifnia, A. M., Kpormegbey, D. E., Thapa, D. K., & Cleary, M. (2026). A Primer of Data Cleaning in Quantitative Research: Handling Missing Values and Outliers. Journal of Advanced Nursing, 82(1), 970–975. https://doi.org/10.1111/jan.16908

Sholeh, M., Lestari, U., & Andayati, D. (2024). Comparison of Feature Selection with Information Gain Method in Decision Tree, Regression Logistic and Random Forest Algorithms. Journal of Applied Business and Technology, 5(3), 146–153. https://doi.org/10.35145/jabt.v5i3.155

Srirahayu, A., & Pribadie, L. S. (2023). Review Paper Data Mining Klasifikasi Data Mining. Jurnal Ilmiah Informatika Global, 14(1). https://doi.org/10.36982/jiig.v14i1.2981

Surya Maulana, A., Nazir, A., Handayani, L., & Afrianty, I. (2023). Penerapan Algoritma Fuzzy C-Means untuk Melihat Pola Penerima Beasiswa Bank Indonesia. KLIK: Kajian Ilmiah Informatika Dan Komputer, 3(6), 670–679. https://doi.org/10.30865/klik.v3i6.788

Zahrani Putri, A., Afdal, M., Monalisa, S., & Permana, I. (2023). Penerapan Algoritma Fuzzy C-Means Pada Segmentasi Pelanggan B2B dengan Model LRFM. Jurnal Media Informatika Budidarma, 7(3), 1423. https://doi.org/10.30865/mib.v7i3.6150


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Algoritma Fuzzy C-Means Untuk Pengelompokan Data Keluarga

Dimensions Badge
Article History
Published: 2025-12-29
Abstract View: 287 times
PDF Download: 99 times
Issue
Section
Articles

Most read articles by the same author(s)

1 2 3 > >>