Prediksi Produksi Kelapa Sawit Menggunakan Algoritma Support Vector Regression dan Recurrent Neural Network
Abstract
Oil palm is one of the important plantation crops and a leading commodity in Indonesia. PT. XYZ is a company engaged in receiving Fresh Fruit Bunches (FFB) to be processed into Crude Palm Oil (CPO) and Palm Kernel (PK). So far, the company has conducted statistical analysis with a correction value of 5% - 12% on the production results each month in targeting production results. However, this method is still lacking, because it uses manual calculations and considers estimates from personal experience. Therefore, this research proposes a data mining technique with Support Vector Regression (SVR) and Recurrent Neural Network (RNN) algorithms to predict production output precisely. In this study, testing was carried out on SVR hyperparameters, namely Kernel, C, Gamma, and Epsilon. While in RNN, testing is carried out on the optimizer, and the learning rate. In addition, the window size is also determined through a series of experiments, namely 3, 5, and 7. The comparison results show that the RNN model outperforms SVR with an RMSE value of 0.0928, MAPE of 14.32%, and R2 of 0.6164. The RNN model was then implemented to predict the next 3-month period. The prediction results show that there will be a significant increase in production in the first month, then a slight decrease in the second month, and an increase again in the third month.
Downloads
References
C. Michael, P. Marpaung, and F. Siburian, “Analisis Hubungan Biaya Produksi Kelapa Sawit Terhadap Pendapatan Petani di Desa Pulo Bayu Kecamatan Hutabayu Raja, Kabupaten Simalungun Organik,” Jurnal Agroteknosains, vol. 4, no, pp. 8–16, 2020.
R. H. Fauzi, Y., Widyastuti, Y. E., Satyawibawa, I., & Paeru, “Kelapa sawit,” Penebar Swadaya Grup, 2019.
A. Haryanti, N. Norsamsi, P. S. Fanny Sholiha, and N. P. Putri, “Studi Pemanfaatan Limbah Padat Kelapa Sawit,” Konversi, vol. 3, no. 2, p. 20, 2019, doi: 10.20527/k.v3i2.161.
S. Hajar, A. A. Novany, A. P. Windarto, A. Wanto, and E. Irawan, “Penerapan K-Means Clustering pada ekspor minyak kelapa sawit menurut negara tujuan,” Seminar Nasional Teknologi Komputer & Sains (SAINTEKS) 2020, pp. 314–318, 2020.
E. Wulansari, E. Yulianto, and E. Pangestuti, “Pengaruh Jumlah Produksi, Harga Internasional, Nilai Tukar dan Tingkat Suku Bunga Terhadap Tingkat Daya Saing Ekspor Kelapa Sawit Indonesia (Studi pada Tahun 2009-2013),” Jurnal Administrasi Bisnis S1 Universitas Brawijaya, vol. 39, no. 2, pp. 176–184, 2019.
BPDP, “Alat Cerdas deteksi kematangan buah kelapa sawit,” 2018.
A. Agri, “Bagaimana minyak kelapa sawit dibuat?,” 2019.
W. Muslehatin, M. Ibnu, and Mustakim, “Penerapan Naïve Bayes Classification untuk Klasifikasi Tingkat Kemungkinan Obesitas Mahasiswa Sistem Informasi UIN Suska Riau,” Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI), pp. 250–256, 2019.
Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” Edik Informatika, vol. 2, no. 2, pp. 213–219, 2018, doi: 10.22202/ei.2016.v2i2.1465.
A. A. Fardhani, D. I. N. Simanjuntak, and A. Wanto, “Prediksi Harga Eceran Beras Di Pasar Tradisional Di 33 Kota Di Indonesia Menggunakan Algoritma Backpropagation,” Jurnal Infomedia, vol. 3, no. 1, 2018, doi: 10.30811/jim.v3i1.625.
Q. Quan, Z. Hao, H. Xifeng, and L. Jingchun, “Research on water temperature prediction based on improved support vector regression,” Neural Computing and Applications, vol. 34, no. 11, pp. 8501–8510, 2022, doi: 10.1007/s00521-020-04836-4.
A. A. Ghozi, A. Aprianti, A. D. P. Dimas, and R. Fauzi, “Analisis Prediksi Data Kasus Covid-19 di Provinsi Lampung Menggunakan Recurrent Neural Network (RNN),” Indonesian Journal of Applied Mathematics, vol. 2, no. 1, p. 25, 2022, doi: 10.35472/indojam.v2i1.763.
A. Widiarni and M. Mustakim, “Penerapan Algoritma Support Vector Regression dalam Memprediksi Produksi dan Produktivitas Kelapa Sawit,” Jurnal Media Informatika Budidarma, vol. 7, no. 2, pp. 864–872, 2023, doi: 10.30865/mib.v7i2.6089.
F. Husaini, I. Permana, M. Afdal, and F. N. Salisah, “Penerapan Algoritma Long Short-Term Memory untuk Prediksi Produksi Kelapa Sawit,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 366–374, 2024, doi: 10.57152/malcom.v4i2.1187.
F. Irawan, S. Sumijan, and Y. Yuhandri, “Prediksi Tingkat Produksi Buah Kelapa Sawit dengan Metode Single Moving Average,” Jurnal Informasi dan Teknologi, vol. 3, pp. 251–256, 2021, doi: 10.37034/jidt.v3i4.162.
A. Rahmadeyan and Mustakim, “Long Short-Term Memory and Gated Recurrent Unit for Stock Price Prediction,” Procedia Computer Science, vol. 234, pp. 204–212, 2024, doi: 10.1016/j.procs.2024.02.167.
D. Singh and B. Singh, “Investigating the impact of data normalization on classification performance,” Applied Soft Computing, vol. 97, p. 105524, 2020, doi: 10.1016/j.asoc.2019.105524.
A. Rahmadeyan, Mustakim, I. Ahmad, A. D. Alexander, and A. Rahman, “Phishing Website Detection with Ensemble Learning Approach Using Artificial Neural Network and AdaBoost,” in 2023 International Conference on Information Technology Research and Innovation (ICITRI), 2023, pp. 162–166, doi: 10.1109/ICITRI59340.2023.10249799.
P. Bhola and S. Bhardwaj, “Estimation of solar radiation using support vector regression,” Journal of Information and Optimization Sciences, vol. 40, no. 2, pp. 339–350, 2019, doi: 10.1080/02522667.2019.1578093.
S. Saadah, F. Z. Z, and H. H. Z, “Support Vector Regression (SVR) Dalam Memprediksi Harga Minyak Kelapa Sawit di Indonesia dan Nilai Tukar Mata Uang EUR/USD,” Journal of Computer Science and Informatics Engineering (J-Cosine), vol. 5, no. 1, pp. 85–92, 2021, doi: 10.29303/jcosine.v5i1.403.
R. E. Cahyono and J. P. Sugiono, “Analisis Kinerja Metode Support Vector Regression (SVR) dalam Memprediksi Indeks Harga Konsumen,” Jurnal Teknologi Informasi dan Multimedia, vol. 1, no. 2, pp. 106–116, 2019, doi: 10.35746/jtim.v1i2.22.
Y. Yang, J. Che, C. Deng, and L. Li, “Sequential grid approach based support vector regression for short-term electric load forecasting,” Applied Energy, vol. 238, pp. 1010–1021, 2019, doi: 10.1016/j.apenergy.2019.01.127.
G. H. Saputra, A. H. Wigena, and B. Sartono, “Penggunaan Support Vector Regression Dalam Pemodelan Indeks Saham Syariah Indonesia Dengan Algoritme Grid Search,” Indonesian Journal of Statistics and Its Applications, vol. 3, no. 2, pp. 148–160, 2019, doi: 10.29244/ijsa.v3i2.172.
R. Al Kiramy, I. Permana, and A. Marsal, “Perbandingan Performa Algoritma RNN dan LSTM dalam Prediksi Jumlah Jamaah Umrah pada PT. Hajar Aswad,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 4, pp. 1224–1234, 2024.
N. T. Luchia, E. Tasia, I. Ramadhani, A. Rahmadeyan, and R. Zahra, “Performance Comparison Between Artificial Neural Network, Recurrent Neural Network and Long Short-Term Memory for Prediction of Extreme Climate Change,” Public Research Journal of Engineering, Data Technology and Computer Science, vol. 1, no. 2, pp. 62–70, 2024, doi: 10.57152/predatecs.v1i2.864.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Prediksi Produksi Kelapa Sawit Menggunakan Algoritma Support Vector Regression dan Recurrent Neural Network
Pages: 2102-2110
Copyright (c) 2024 Rezky Alfakhri, Inggih Permana, Rice Novita, M Afdal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).