Klasifikasi Sentimen Masyarakat Terhadap Pemberlakuan Pembatasan Kegiatan Masyarakat Menggunakan Text Mining Pada Twitter


  • Asdar Mustofa * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Rice Novita Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Covid-19; Classification; Text Mining; PPKM; KNN; NBC; Twitter

Abstract

Corona Virus Disease 2019 (Covid-19) is currently a pandemic in the world, including in Indonesia. Various policies have been carried out to break the chain of the spread of Covid-19, one of which is the government's policy of implementing Community Activity Restrictions (PPKM). PPKM is one of the most discussed topics on social media, including Twitter. Tweets on Twitter given by the public to the PPKM policy that was held to evaluate the implementation of PPKM, it is necessary to classify public sentiment using text mining, in this study using the K-Nearest Neighbor (KNN) and Naïve Bayes Classifier (NBC) algorithms with data from tweets. Twitter during the PPKM last year with 3,516 data. Where the results are that the NBC algorithm is better than the KNN algorithm with an accuracy of 79.67% compared to 78.86%, the polarity of public sentiment towards PPKM is also obtained with positive sentiment of 36.83% with a total of 1,295, neutral sentiment of tweets 54.15% with the number of 1,902 tweets, and 9.02% negative sentiment with a total of 317 tweets

Downloads

Download data is not yet available.

References

D. R. Rahadi, “Perilaku Pengguna Dan Informasi Hoax Di Media Sosial,” Jurnal Manajemen Dan Kewirausahaan, vol. 5, no. 1, pp. 58–70, 2017, doi: 10.26905/jmdk.v5i1.1342.

Liputan6, “Jumlah Pengguna Instagram dan Facebook Indonesia Terbesar ke-4 di Dunia - Tekno Liputan6.com,” 2019. https://www.liputan6.com/tekno/read/3998624/jumlah-pengguna-instagram-dan-facebook-indonesia-terbesar-ke-4-di-dunia (accessed Nov. 10, 2021).

suara.com, “Jumlah Pengguna Media Sosial Indonesia Capai 191,4 Juta per 2022 - Bagian 2.” https://www.suara.com/tekno/2022/02/23/191809/jumlah-pengguna-media-sosial-indonesia-capai-1914-juta-per-2022?page=2 (accessed Feb. 27, 2022).

M. S. Hadna, P. I. Santosa, and W. W. Winarno, “Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisis Sentimen Di Twitter,” Seminar Nasional Teknologi Informasi dan Komunikasi, vol. 2016, no. Sentika, pp. 57–64, 2016.

Hartanto, “Text Mining Dan Sentimen Analisis Twitter Pada Gerakan Lgbt,” Intuisi : Jurnal Psikologi Ilmiah, vol. 9, no. 1, pp. 18–25, 2017, doi: 10.15294/intuisi.v9i1.9561.

Y. Fitriani, “Analisis Pemanfaatan Berbagai Media Sosial sebagai Sarana Penyebaran Informasi bagi Masyarakat,” Paradigma - Jurnal Komputer dan Informatika, vol. 19, no. 2, p. 152, 2017.

Tribunnews.com, “Apa Itu PPKM? Simak Penjelasannya dan Ini Rincian Lengkap Aturannya,” 2021. https://www.tribunnews.com/corona/2021/07/12/apa-itu-ppkm-simak-penjelasannya-dan-ini-rincian-lengkap-aturannya (accessed Nov. 10, 2021).

Nasional Tempo.co, “Gonta-ganti Istilah Penanganan Covid-19: PSBB Hingga Terkini PPKM Level 4 ,” 2021. https://nasional.tempo.co/read/1486390/gonta-ganti-istilah-penanganan-covid-19-psbb-hingga-terkini-ppkm-level-4/full&view=ok (accessed Nov. 10, 2021).

H. Y. P. Sibuea, “Penegakan Hukum Pemberlakuan Pembatasan Kegiatan Masyarakat (PPKM) Darurat Jawa dan Bali,” Info Singkat, vol. XIII, pp. 1–6, 2021.

detikFinance, “Begini Pahitnya Dampak dari PPKM Darurat - Halaman 2,” 2021. https://finance.detik.com/berita-ekonomi-bisnis/d-5648999/begini-pahitnya-dampak-dari-ppkm-darurat/2 (accessed Nov. 10, 2021).

Top Jabar, “Demo Tolak PPKM: Si Miskin Teriak Lapar, Si Kaya Teriak Prokes,” 2021. https://topjabar.co/2021/07/21/demo-tolak-ppkm-si-miskin-teriak-lapar-si-kaya-teriak-prokes/peristiwa/30543/ (accessed Nov. 10, 2021).

JawaPos.com, “Graffiti dan Mural: Curahan Hati Rakyat tentang PPKM,” 2021. https://radarbanyuwangi.jawapos.com/kolom/27/08/2021/graffiti-dan-mural-curahan-hati-rakyat-tentang-ppkm (accessed Nov. 29, 2021).

F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” INOVTEK Polbeng - Seri Informatika, vol. 3, no. 1, p. 50, 2018, doi: 10.35314/isi.v3i1.335.

G. N. Bagaskoro, M. A. Fauzi, and P. P. Adikara, “Penerapan Klasifikasi Tweets Pada Berita Twitter Menggunakan Metode K-Nearest Neighbor Dan Query Expansion Berbasis Distributional Semantic,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, vol. 2, no. 10, pp. 3849–3855, 2018.

A. Tarigan, E. Wahyudi, and J. Adhiva, “Klasifikasi Status Kesejahteraan Rumah Tangga di Kabupaten Siak Menggunakan Algoritma Naive Bayes Classifier,” Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 11, no. November, pp. 187–196, 2019.

T. Qurahman, “Klasifikasi Nasabah DAlam Membayar Kredit Bank Menggunakan Algoritma Naive Bayes Classifier dan Probabilistic Neural Network,” Universitas Islam Negeri Sultan Syarif Kasim Riau, 2019.

A. Hidayat, Mustakim, M. Z. Fauzi, and I. Syukra, “Implementasi Algoritma K-Nearest Neighbor dan Probabilistic Neural Network untuk Analisis Opini Masyarakat Terhadap Toko Online di Indonesia,” Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 11, no. November, pp. 254–261, 2019.

T. Krisdiyanto, “Analisis Sentimen Opini Masyarakat Indonesia Terhadap Kebijakan PPKM pada Media Sosial Twitter Menggunakan Naïve Bayes Clasifiers,” Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi, vol. 7, no. 1, pp. 32–37, 2021.

S. D. Pramukti, A. Nugroho, and A. S. Sunge, “Analisis Sentimen Masyarakat Dengan Metode Naïve Bayes dan Particle Swarm Optimization,” Techno.Com, vol. 21, no. 1, pp. 61–74, 2022, doi: 10.33633/tc.v21i1.5332.

A. Salma and W. Silfianti, “Sentiment Analysis of User Reviews on COVID-19 Information Applications Using Naive Bayes Classifier , Support Vector Machine , and K-Nearest Neighbor,” vol. 6, no. 4, pp. 158–162, 2021.

J. A. Pratama, Y. Suprijadi, and Z. Zulhanif, “The Analisis Sentimen Sosial Media Twitter Dengan Algoritma Machine Learning Menggunakan Software R,” Jurnal Fourier, 2017, doi: 10.14421/fourier.2017.62.85-89.

N. D. Mentari, M. A. Fauzi, and L. Muflikhah, “Analisis Sentimen Kurikulum 2013 Pada Sosial Media Twitter Menggunakan Metode K-Nearest Neighbor dan Feature Selection Query Expansion Ranking,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, vol. 2, no. 8, pp. 2739–2743, 2018.

W. Muslehatin, M. Ibnu, and Mustakim, “Penerapan Naïve Bayes Classification untuk Klasifikasi Tingkat Kemungkinan Obesitas Mahasiswa Sistem Informasi UIN Suska Riau,” Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI), pp. 250–256, 2017.

I. M. B. S. Darma, R. S. Perdana, and Indriati, “Penerapan Sentimen Analisis Acara Televisi Pada Twitter Menggunakan Support Vector Machine dan Algoritma Genetika sebagai Metode Seleksi Fitur,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2018.

W. Gata, “Akurasi Text Mining Menggunakan Algoritma K-Nearest Neighbour pada Data Content Berita SMS,” vol. 6, pp. 1–13, 2017.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Sentimen Masyarakat Terhadap Pemberlakuan Pembatasan Kegiatan Masyarakat Menggunakan Text Mining Pada Twitter

Dimensions Badge
Article History
Submitted: 2022-06-08
Published: 2022-06-30
Abstract View: 95 times
PDF Download: 70 times
How to Cite
Mustofa, A., & Novita, R. (2022). Klasifikasi Sentimen Masyarakat Terhadap Pemberlakuan Pembatasan Kegiatan Masyarakat Menggunakan Text Mining Pada Twitter. Building of Informatics, Technology and Science (BITS), 4(1), 200−208. https://doi.org/10.47065/bits.v4i1.1628
Issue
Section
Articles