Analisis Customer Lifetime Value Berdasarkan Produk Menggunakan Metode RFM/P dan Algoritma Fuzzy C-Means
Abstract
212 Mart Soebrantas is a retail company based on a Sharia Cooperative. 212 Mart Soebrantas segments its customers in terms of monetary value, specifically customers who make many purchases. Currently, 212 Mart does not consider recency and frequency, because customers who make transactions of 50 thousand rupiahs receive 1 point. If the points accumulate to 200, they exchange them for a shopping voucher worth 50 thousand rupiah to shop at 212 Mart. 212 Mart Soebrantas needs to understand Customer Lifetime Value (CLV) to determine the customer categories worth keeping and profitable for 212 Mart. Therefore, 212 Mart needs to understand and know its customer segments based on product-based transactions or RFM/P. This research analyzes Customer Lifetime Value Based on Products Using the RFM/P Method and Fuzzy C-Means Algorithm at 212 Mart Soebrantas to help 212 Mart identify customer segment characteristics, and customer loyalty per product category, and provide strategic recommendations. The data used is customer transaction data from January 2023 to September 2023. The study uses products from 10 categories with 6 attributes: Member Code, Stock Name, Transaction Date, Quantity, Basic Price, and Department. The research shows that the best cluster is found in the Basic Material category with a DBI value of 0.4990, and it is a Superstar Customer based on Customer Portfolio Analysis (CPA).
Downloads
References
A. Febriani and S. A. Putri, “Segmentasi Konsumen Berdasarkan Model Recency , Frequency , Monetary dengan Metode K-Means Consumer Segmentation Based on Recency , Frequency , Monetary Models with the K-Means Method,” pp. 52–57, 2020, doi: 10.30813/jiems.v13i2.2274.
B. C. Laksono and I. Y. Wulansari, “Pemodelan Dan Penerapan Metode Rfm Pada Estimasi Nilai Konsumen (Customer Lifetime Value) Menggunakan K-Means Clustering Machine Learning,” Semin. Nas. Off. Stat., vol. 2020, no. 1, pp. 1277–1285, 2021, doi: 10.34123/semnasoffstat.v2020i1.689.
U. Soleha, “ANALISIS CUSTOMER LIFETIME VALUE BERDASARKAN PRODUK MENGGUNAKAN MODEL RFM/P DAN ALGORITMA FUZZY C-MEANS,” Universitas Islam Negeri Sultan Syarif Kasim Riau, 2023.
R. Heldt, C. S. Silveira, and F. B. Luce, “Predicting customer value per product: From RFM to RFM/P,” J. Bus. Res., vol. 127, no. March 2018, pp. 444–453, 2021, doi: 10.1016/j.jbusres.2019.05.001.
M. A. Shah Putra, S. Monalisa, J. Julhandri, and I. Khoiru, “Penerapan Algoritma Fuzzy C-Means Menggunakan Model Rfm Dalam Klasterisasi Pelanggan Pada Toko Kue Feandra Cake,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 6, no. 1, p. 64, 2020, doi: 10.24014/rmsi.v6i1.8646.
T. L. Saaty, “Decision making with the Analytic Hierarchy Process,” Sci. Iran., vol. 9, no. 3, pp. 215–229, 2008, doi: 10.1504/ijssci.2008.017590.
S. Monalisa, A. H. Asrori, and F. Kurnia, “Sistem Rekomendasi Produk Menggunakan Model RFM, AHP dan Ranked Clustering,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 100–105, 2019, doi: 10.29207/resti.v3i2.810.
R. K. Dinata, H. Novriando, N. Hasdyna, and S. Retno, “Reduksi Atribut Menggunakan Information Gain untuk Optimasi Cluster Algoritma K-Means,” J. Edukasi dan Penelit. Inform., vol. 6, no. 1, p. 48, 2020, doi: 10.26418/jp.v6i1.37606.
J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: THE FUZZY c-MEANS CLUSTERING ALGORITHM JAMES,” Comput. Geosci. Vol. 10, No. 2-3, pp. 191-203, 1984. Print. U.S.A., vol. 10, no. 2, pp. 191–203, 1984, doi: 10.1109/igarss.1988.569600.
S. P. Nabila, N. Ulinnuha, and A. Yusuf, “Model Prediksi Kelulusan Tepat Waktu Dengan Metode Fuzzy C-Means Dan K-Nearest Neighbors Menggunakan Data Registrasi Mahasiswa,” Netw. Eng. Res. Oper., vol. 6, no. 1, p. 39, 2021, doi: 10.21107/nero.v6i1.199.
A. Z. Putri, M. Afdal, S. Monalisa, and I. Permana, “Penerapan Algoritma Fuzzy C-Means Pada Segmentasi Pelanggan B2B dengan Model LRFM,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 3, pp. 1423–1432, 2023, doi: 10.30865/mib.v7i3.6150.
D. L. Aditya and D. Fitrianah, “Comparative Study of Fuzzy C-Means and K-Means Algorithm for Grouping Customer Potential in Brand Limback,” J. Ris. Inform., vol. 3, no. 4, pp. 327–334, 2021, doi: 10.34288/jri.v3i4.241.
S. Monalisa, P. Nadya, and R. Novita, “Analysis for customer lifetime value categorization with RFM model,” Procedia Comput. Sci., vol. 161, pp. 834–840, 2019, doi: 10.1016/j.procs.2019.11.190.
A. Wicaksono, F. A. Bachtiar, and N. Y. Setiawan, “Segmentasi Pelanggan Menggunakan Fuzzy C-Means Clustering berdasarkan RFM Model pada E-Commerce (Studi Kasus: E-Commerce XYZ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, pp. 1351–1360, 2021.
P. Delaya, A. Handojo, and A. Setiawan, “Aplikasi Segmentasi Pelanggan menggunakan Algoritma RFM/P dan Kmeans Clustering pada PT. XYZ,” J. Infra, vol. 9, no. 2, 2021, [Online]. Available: https://garuda.kemdikbud.go.id/documents/detail/2283104.
D. Rajeswari and K. Thangavel, “The Performance of Data Normalization Techniques on Heart Disease Datasets,” Int. J. Adv. Res. Eng. Technol., vol. 11, no. 12, pp. 2350–2357, 2020, doi: 10.34218/IJARET.11.12.2020.222.
A. Jaini, Mustakim, A. W. Syaputri, T. Qurahman, and S. T. Rizaldi, “Perbandingan Algoritma Fuzzy C-Means dan K-Medoids untuk Pengelompokan Data Penjualan pada 212 Mart,” Semin. Nas. Teknol. Informasi, Komun. dan Ind. 12, no. 2012, pp. 172–179, 2020.
E. Rouza and L. Fimawahib, “Implementasi Fuzzy C-Means Clustering dalam Pengelompokan UKM Di Kabupaten Rokan Hulu,” Techno.Com, vol. 19, no. 4, pp. 481–495, 2020, doi: 10.33633/tc.v19i4.4101.
I. Wahyudi, M. B. Sulthan, and L. Suhartini, “Analisa Penentuan Cluster Terbaik Pada Metode K-Means Menggunakan Elbow Terhadap Sentra Industri Produksi Di Pamekasan,” J. Apl. Teknol. Inf. dan Manaj., vol. 2, no. 2, pp. 72–81, 2021, doi: 10.31102/jatim.v2i2.1274.
W. A. Putri, D. Rachmawati, and W. S. Silalahi, “Sistem Pendukung Keputusan Pemilihan E-Wallet Menggunakan Metode Analytic Hierarchy Process-TOPSIS,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 1, pp. 18–27, 2022, doi: 10.57152/malcom.v2i1.160.
D. I. Yahya, E. Mikael, Y. J. G. Ramadhan, and M. Badrul, “Penerapan Metode Ahp Untuk Penentuan Siswa Terbaik Di Smp Yapindo II,” J. Larik Ldng. Artik. Ilmu Komput., vol. 1, no. 2, pp. 50–58, 2021, doi: 10.31294/larik.v1i2.748.
I. Ramadhan and D. Cahya Putri Buani, “Sistem Pendukung Keputusan Pemilihan Karyawan Terbaik Berdasarkan Kinerja Dengan Metode Analytical Hierarchy Process (AHP),” EVOLUSI J. Sains dan Manaj., vol. 11, no. 1, pp. 22–30, 2023, doi: 10.31294/evolusi.v11i1.14966.
A. N. Husna and C. Arifa, “Analisis Segmentasi Pelanggan Berdasarkan Customer Lifetime Value,” J. ABIS Account. Bus. Inf. Syst., vol. 7, no. 2, p. 245, 2019, [Online]. Available: https://jurnal.ugm.ac.id/abis/article/view/58833/28641.
H. Lohonauman, “IPTEKS PENGHITUNGAN CUSTOMER LIFETIME VALUE,” J. Ipteks Akunt. bagi Masy., vol. 4, no. 1, pp. 19–23, 2020.
S. A. Perdana, S. F. Florentin, and A. Santoso, “ANALISIS SEGMENTASI PELANGGAN MENGGUNAKAN K-MEANS CLUSTERING STUDI KASUS APLIKASI ALFAGIFT,” Sebatik, vol. 26, no. 2, pp. 420–427, 2022, doi: 10.46984/sebatik.v26i2.2134.
I. Maskanah, A. Primajaya, and A. Rizal, “Segmentasi Pelanggan Toko Purnama dengan Algoritma K-Means dan Model RFM untuk Perancangan Strategi Pemasaran,” INOVTEK Polbeng - Seri Inform., vol. 5, no. 2, p. 218, 2020, doi: 10.35314/isi.v5i2.1443.
N. P. P. Yuliari, I. K. G. D. Putra, and N. K. D. Rusjayanti, “Customer segmentation through fuzzy C-means and fuzzy RFM method,” J. Theor. Appl. Inf. Technol., vol. 78, no. 3, pp. 380–385, 2015.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Customer Lifetime Value Berdasarkan Produk Menggunakan Metode RFM/P dan Algoritma Fuzzy C-Means
Pages: 1605-1617
Copyright (c) 2024 Dyana Rachmawati, Siti Monalisa, Fitriani Muttakin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).