Analisis Sentimen Komentar Perplexity AI di X Tentang Pendidikan Menggunakan Support Vector Machine


  • Yoga Ardiansah * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Siti Monalisa Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fitriani Muttakin Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Artificial Intelligence; Chatbot; Perplexity; Sentiment Analysis; Support Vector Machine

Abstract

Chatbots with Artificial Intelligence are increasingly popular in everyday life. Due to its ability to reason and convey information expressively, Artificial Intelligence (AI) using Natural Language Processing (NLP) models can communicate like humans. Users find one of Perplexity's AI chatbots interesting because it can pinpoint sources of information. As time goes by and the number of Perplexity users increases, sentiment analysis is used to measure user happiness. This sentiment analysis serves as the data source for this research, helping understand how users react to social media X (Twitter). The Support Vector Machines (SVM) method was used in this study, where SVM maximises the distance (margin) between data groups to determine the ideal hyperplane. According to the survey, 90.11% of respondents expressed positive sentiments, 5.30% expressed negative opinions, and 4.69% expressed neutral sentiments. Using a ratio of 80% training data and 20% test data, the f1 score reached 96%, with accuracy and precision of 92% each.

Downloads

Download data is not yet available.

References

A. Iorliam dan J. A. Ingio, “A comparative analysis of generative artificial intelligence tools for natural language processing,” J. Comput. Theor. Appl. ISSN, vol. 3024, hal. 9104, 2024, doi: 10.62411/jcta.9447.

P. L. Utami, N. Suprapto, H. N. Hidaayatullaah, dan T. Cheng, “The comparison of Chat GPT , Perplexity AI , and Scopus database to capture Indonesian higher education quality in achieving SDGs 2030,” vol. 513, 2024, doi: 10.1051/e3sconf/202451304001.

A. Infante dkk ., “Large language models ( LLMs ) in the evaluation of emergency radiology reports : performance of ChatGPT-4 , Perplexity , and Bard,” Clin. Radiol., vol. 79, no. 2, hal. 102–106, 2024, doi: 10.1016/j.crad.2023.11.011.

E. Kasneci dkk ., “ChatGPT for good? On opportunities and challenges of large language models for education,” Learning and Individual Differences, vol. 103, no. February. 2023. doi: 10.1016/j.lindif.2023.102274.

A. G. Gravina, R. Pellegrino, G. Palladino, G. Imperio, A. Ventura, dan A. Federico, “Charting new AI education in gastroenterology : Cross-sectional evaluation of ChatGPT and perplexity AI in medical residency exam,” vol. 56 no. 8, 2024, doi: 10.1016/j.dld.2024.02.019.

C. U. Lubis, B. Ichsanda, dan R. Hz, “Perplexity AI on the Writing Efficiency of EFL Students in Higher Education: Students’ Insights,” vol. 8, no. 1, hal. 167–178, 2024, doi: 10.29240/ef.v8i1.

D. Baidoo-Anu dan L. O. Ansah, “Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning,” J. AI, vol. 7, no. 1, hal. 52–62, 2023, doi: 10.2139/ssrn.4337484.

S. Arora, S. Mahapatra, A. Jadav, M. Barla, dan N. Mallick, “Temporal and Sentimental Analysis of Customer Reviews,” in 2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence), 2024, hal. 520–525. doi: 10.1109/Confluence60223.2024.10463473.

R. Wahyudi dkk ., “Analisis Sentimen pada review Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine,” J. Inform., vol. 8, no. 2, hal. 200–207, 2021, doi: 10.31294/ji.v8i2.9681.

G. J. Sagala dan Y. T. Samuel, “Sentiment Analysis on ChatGPT App Reviews on Google Play Store Using Random Forest Algorithm, Support Vector Machine and Naïve Bayes,” Int. J. Eng. Bus. Soc. Sci., vol. 2, no. 04, hal. 1194–1204, 2024, doi: 10.58451/ijebss.v2i04.148.

M. Tubishat, F. Al-Obeidat, dan A. Shuhaiber, “Sentiment Analysis of Using ChatGPT in Education,” 2023 Int. Conf. Smart Appl. Commun. Networking, SmartNets 2023, hal. 1–7, 2023, doi: 10.1109/SmartNets58706.2023.10215977.

Y. B. Laia Sunneng Sandino; Sumihar, Yo’el Pieter; Budiati, Haeni, “Implementasi Library Textblob dan Metode Support Vector Machine Pada Analisis Sentimen Pelanggan Terhadap Jasa Transportasi Online,” Build. Informatics, Technol. Sci., no. Vol 6 No 1 (2024): June 2024, hal. 1−10, 2024, doi: 10.47065/bits.v6i1.5090.

N. Yolanda, I. H. Santi, dan D. F. H. Permadi, “Analisis Sentimen Analisis Sentimen Popularitas Aplikasi Moodle dan Edmodo Menggunakan Algoritma Support Vector Machine,” J. Algoritm., vol. 3, no. 1, hal. 48–59, 2022, doi: 10.35957/algoritme.v3i1.3313.

V. Nava, M. Kusman, V. Metayani, dan O. Karnalim, “Prediksi Analisis Sentimen Data Debat Pemilihan Presiden 2024 Menggunakan Support Vector Machine ( SVM ) Prediction of Sentiment Analysis of 2024 Presidential Election Debate Data Using Support Vector Machine ( SVM ),” vol. 16, hal. 1–5, 2024, doi: 10.35891/explorit.v16i1.4887.

A. R. Isnain, A. I. Sakti, D. Alita, dan N. S. Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm,” J. Data Min. Dan Sist. Inf., vol. 2, no. 1, hal. 31–37, 2021, doi: 10.33365/JDMSI.V2I1.1021.

M. L. Nugraha dan E. B. Setiawan, “Bank Central Asia (BBCA) Stock Price Sentiment Analysis On Twitter Data Using Neural Convolutional Network (CNN) And Bidirectional Long Short-Term Memory (BI-LSTM),” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 3, hal. 936–947, 2023.

N. P. Wahyuningtyas, D. E. Ratnawati, dan N. Y. Setiawan, “Root Cause Analysis (RCA) berbasis Sentimen menggunakan Metode K-Nearest Neighbor (K-NN)(Studi Kasus: Pengunjung Kolam Renang Brawijaya),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 5, hal. 2515–2520, 2023.

A. O. Permana dan S. Saepudin, “Perbandingan algoritma k-nearst neighbor dan naïve bayes pada aplikasi shopee,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 4, no. 1, hal. 25–32, 2023, doi: 10.37859/coscitech.v4i1.4474.

S. Chamira, “Implementasi Metode Text Mining Frequency-Invers Document Frequency (Tf-Idf) Untuk Monitoring Diskusi Online,” J. Informatics, Electr. Electron. Eng., vol. 1, no. 3, hal. 97–102, 2022, doi: 10.47065/jieee.v1i3.353.

M. Aulia dan A. Hermawan, “Analisis Perbandingan Algoritma SVM, Naïve Bayes, dan Perceptron untuk Analisis Sentimen Ulasan Produk Tokopedia,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 4, hal. 1850, 2023, doi: 10.30865/mib.v7i4.6839.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Komentar Perplexity AI di X Tentang Pendidikan Menggunakan Support Vector Machine

Dimensions Badge
Article History
Submitted: 2024-12-05
Published: 2024-12-30
Abstract View: 30 times
PDF Download: 17 times
How to Cite
Ardiansah, Y., Monalisa, S., & Muttakin, F. (2024). Analisis Sentimen Komentar Perplexity AI di X Tentang Pendidikan Menggunakan Support Vector Machine. Building of Informatics, Technology and Science (BITS), 6(3), 2015-2023. https://doi.org/10.47065/bits.v6i3.6396
Issue
Section
Articles