Klasifikasi Penerima Bantuan Program Indonesia Pintar (PIP) Pada Siswa SMK Menggunakan Algoritma KNN, NBC dan C4.5
Abstract
The Indonesia Smart Program (PIP) is a government initiative aimed at providing educational assistance to students from underprivileged families. This research was conducted at SMKN 4 Pekanbaru to enhance the accuracy of distributing PIP aid using data mining methods. Three classification algorithms were used to identify students eligible for assistance: K-Nearest Neighbor (KNN), Naive Bayes Classifier (NBC), and C4.5. The data used in this study included attributes such as parental occupation, income, and the type of transportation used. The data processing involved cleaning, normalization, and splitting into test and training sets. The results showed that the KNN algorithm performed best with an accuracy of 84.20%, precision of 89.83%, and recall of 99.18%. The C4.5 algorithm excelled in model simplicity, while NBC showed less optimal results compared to KNN.
Downloads
References
A. Pebdika, R. Herdiana, and D. Solihudin, “Klasifikasi Menggunakan Metode Naive Bayes Untuk Menentukan Calon Penerima Pip,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 1, pp. 452–458, 2023.
T. Siregar, R. Ardian, and A. Arisman, “STUDI KASUS SMA N 1 SINUNUKAN: IMPLEMENTASI ALGORITMA K-NEAREST NEIGHBOR UNTUK KLASIFIKASI PENERIMA BEASISWA PROGRAM INDONESIA PINTAR (PIP),” Jurnal Cermatika, vol. 4, no. 1, pp. 9–25, 2024.
I. Priyanto, E. M. Dewanti, T. Tundo, M. Nurdin, and R. Kasiono, “PENERAPAN ALGORITMA METODE NAÏVE BAYES UNTUK PENENTUAN PENERIMAAN BANTUAN PROGRAM INDONESIA PINTAR (PIP),” Jurnal Manajamen Informatika Jayakarta, vol. 4, no. 2, pp. 162–172, 2024.
C. Yanasari and T. Arifin, “Implementasi Algoritma K-Nearest Neighbor Untuk Klasifikasi Penerimaan Beasiswa Program Indonesia Pintar,” Jurnal Sistem Informasi dan Ilmu Komputer, vol. 1, no. 4, pp. 178–194, 2023.
I. W. Lorenza, R. Umilasari, and M. Dasuki, “Klasifikasi Penerima Bantuan Beasiswa Menggunakan Algoritma K-Nearest Neighbour Dengan Seleksi Fitur Backward Elimination,” Jurnal Aplikasi Sistem Informasi dan Elektronika, vol. 3, no. 1, pp. 26–31, 2021.
D. J. Sitanggang, E. Buulolo, and S. Aripin, “Normalisasi Data Dengan Model Min Max Untuk Klasifikasi Calon Mahasiswa Yang Layak Memperoleh KIP Kuliah Dengan Algoritma K-Nearest Neighbor,” Informasi dan Teknologi Ilmiah (INTI), vol. 11, no. 3, pp. 88–95, 2024.
Z. Arifin, W. J. Shudiq, and S. Maghfiroh, “Penerapan Metode Knn (K-Nearest Neighbor) Dalam Sistem Pendukung Keputusan Penerimaan Kip (Kartu Indonesia Pintar) Di Desa Pandean Berbasis Web Dan Mysql,” NJCA (Nusantara Journal of Computers and Its Applications), vol. 4, no. 1, pp. 27–34, 2019.
M. Hidayat, A. N. Fuadi, D. P. Utomo, E. D. Astuti, and D. Asmarajati, “Studi Komparasi Algoritma Naïve Bayes Dan K-Nn Untuk Klasifikasi Penerimaan Beasiswa Di Mi Al–Islamiyah Karangsawah,” STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer, vol. 2, no. 4, pp. 172–180, 2023.
E. Budiarto, R. Rino, S. Hariyanto, and D. Susilawati, “Penerapan Data Mining Untuk Rekomendasi Beasiswa Pada SD Maria Mediatrix Menggunakan Algoritma C4. 5,” ALGOR, vol. 3, no. 2, pp. 23–34, 2022.
A. Amalia, A. I. Purnamasari, and I. Ali, “IMPLEMENTASI ALGORITMA C4. 5 DAN NAÏVE BAYES DALAM PENGAMBILAN KEPUTUSAN UNTUK PROGRAM INDONESIA PINTAR (PIP) DI SEKOLAH DASAR NEGERI 04 MAJALANGU,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 2, pp. 1889–1896, 2024.
W. R. S. O. Ningse, S. Sumarno, and Z. M. Nasution, “Klasifikasi Algoritma C4. 5 untuk Penentuan Penerima Program Indonesia Pintar pada MIS Al-Khoirot C4. 5 Algorithm Classification for Determining Smart Indonesia Program Recipients at MIS Al-Khoirot,” JOMLAI: Journal of Machine Learning and Artificial Intelligence, vol. 1, no. 1, pp. 65–76, 2022, doi: 10.55123/jomlai.v1i1.165x.
F. D. Pratama, I. Zufria, and T. Triase, “Implementasi Data Mining Menggunakan Algoritma Naïve Bayes Untuk Klasifikasi Penerima Program Indonesia Pintar,” Rabit: Jurnal Teknologi dan Sistem Informasi Univrab, vol. 7, no. 1, pp. 77–84, 2022.
H. Hamria, “K-Nearest Neighbor Berbasis Seleksi Atribut Chi Square Untuk Klasifikasi Penerima Beasiswa,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 14, no. 1, pp. 39–48, 2023.
A. Hadi and I. Ali, “Menentukan Kelayakan Penerima Kip Menggunakan Klasifikasi Dengan Metode Algoritma Naive Bayes,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 1, pp. 366–372, 2023.
A. Purwanto and H. W. Nugroho, “Analisa Perbandingan Kinerja Algoritma C4. 5 Dan Algoritma K-Nearest Neighbors Untuk Klasifikasi Penerima Beasiswa,” Jurnal Teknoinfo, vol. 17, no. 1, pp. 236–243, 2023.
A. Sumiah and N. Mirantika, “Perbandingan Metode K-Nearest Neighbor dan Naive Bayes untuk Rekomendasi Penentuan Mahasiswa Penerima Beasiswa pada Universitas Kuningan,” Buffer Informatika, vol. 6, no. 1, pp. 1–14, 2020.
H. Noviyanto and B. Mukti, “Implementasi Algoritme Naive Bayes untuk Menentukan Kelayakan Calon Penerima Beasiswa,” Jurnal Informatika Dan Tekonologi Komputer (JITEK), vol. 1, no. 2, pp. 7–12, 2021.
Q. A’yuniyah et al., “Implementasi Algoritma Naïve Bayes Classifier (NBC) untuk Klasifikasi Penyakit Ginjal Kronik,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 1, p. 72, Sep. 2022, doi: 10.30865/json.v4i1.4781.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” Jurnal Sains Komputer & Informatika (J-Sakti), vol. 5, no. 2, pp. 697–711, 2021.
K. P. Siwilopo and H. Marcos, “MEMBANDINGKAN KLASIFIKASI PADA BUAH JERUK MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK DAN K-NEAREST NEIGHBOR,” KOMPUTA : Jurnal Ilmiah Komputer dan Informatika, vol. 12, no. 1, 2023.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Penerima Bantuan Program Indonesia Pintar (PIP) Pada Siswa SMK Menggunakan Algoritma KNN, NBC dan C4.5
Pages: 2131-2138
Copyright (c) 2025 Tandra Adiyatma Putra, Inggih Permana, Zarnelly Zarnelly, Megawati Megawati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).