Analisis Sentimen Publik Terhadap Danantara di Media Sosial X Menggunakan Naïve Bayes dan Support Vector Machine
Abstract
Danantara a state-owned investment management institution, has become a topic of widespread public discussion, particularly on social media platform X, where diverse public opinions are expressed. This study aims to evaluate public sentiment toward Danantara through sentiment analysis using machine learning techniques. The dataset consists of 10,108 tweets, of which 9,790 tweets remained after the preprocessing stage and were ready for analysis. The methodology involves word weighting using Term Frequency-Inverse Document Frequency (TF-IDF) and the implementation of two classification algorithms: Naïve Bayes and Support Vector Machine (SVM). To address the class imbalance in sentiment data, the Synthetic Minority Over-sampling Technique (SMOTE) was applied. Model performance was evaluated using metrics such as accuracy, precision, recall, and F1-score. Initial results show that before applying SMOTE, the Naïve Bayes algorithm achieved an accuracy of 64%, while SVM performed better with an accuracy of 80%. After applying SMOTE, Naïve Bayes accuracy improved to 72%, and SVM increased significantly to 89%. These results indicate that SMOTE is effective in handling data imbalance and enhancing classification performance. Overall, this study provides a clearer picture of public opinion toward Danantara and demonstrates that the combination of preprocessing, TF-IDF, machine learning algorithms, and data balancing techniques can produce more accurate sentiment analysis.
Downloads
References
R. R. Putri and N. Cahyono, “Analisis Sentimen Komentar Masyarakat Terhadap Pelayanan Publik Pemerintah Dki Jakarta Dengan Algoritma Super Vector Machine Dan Naive Bayes,” J. JATI, vol. 8, no. 2, pp. 2363–2371, 2024, doi: https://doi.org/10.36040/jati.v8i2.9472.
Hidayatunnisa, Kusrini, and Kusnawi, “Perbandingan Kinerja Metode Naïve Bayes Dan Support Vector Machine Untuk Analisis Sentimen Ulasan Pengguna Aplikasi Pintu,” J. Fasilkom, vol. 13, no. 2, pp. 173–180, 2023, doi: http://dx.doi.org/10.23960/jitet.v13i2.6220.
D. D. Saputra et al., “Analisis Sentimen Terhadap Twitter Direktorat Jenderal Bea dan Cukai Menggunakan komparasi Algoritma Naïve Bayes dan Support Vector Machine,” J-INTECH, Vol 12, No 2, pp. 285–296, 2024, doi: https://doi.org/10.32664/j-intech.v12i02.1274.
D. I. Efendi, D. Solihudin, C. L. Rohmat, and S. E. Permana, “Bpjs Kesehatan Dengan Pendekatan Support Vector Machine ( Svm ) Dalam Analisis Sentimen,” J. JATI, vol. 8, no. 1, pp. 88–94, 2024, doi: https://doi.org/10.36040/jati.v8i1.8304.
A. Fauzi, P. Studi, S. Informasi, U. Bina, and S. Informatika, “Analisis Sentimen Terhadap Pemutar Musik Online Spotify Dengan Algoritma Naive Bayes dan Support Vector Machine,” J. Ilk., vol. 6, no. 2, pp. 111–122, 2023, doi: https://doi.org/10.47324/ilkominfo.v6i2.180.
T. T. Widowati et al., “Analisis Sentimen Twitter Terhadap Tokoh Publik Dengan Algoritma Naive Bayes Dan Support Vector,” J. SIMETRIS, vol. 11, no. 2, 2020, doi: https://doi.org/10.24176/simet.v11i2.4568.
F. A. Ryandi, D. Pratiwi, and S. Sari, “Analisis Sentimen Masyarakat Di Media Sosial X Terhadap Kemenkes Dengan Naive Bayes dan SVM,” J. Sains Dan Teknol., vol. 7, no. 1, pp. 1–6, 2025, [Online]. Available: https://ejournal.sisfokomtek.org/index.php/saintek/article/view/4615
A. Supian, B. T. Revaldo, N. Marhadi, and L. Efrizoni, “Perbandingan Kinerja Naïve Bayes dan SVM pada Analisis Sentimen Twitter Ibukota Nusantara,” J. Ilm. Inform., vol. 12, No 1, 2024, doi: https://doi.org/10.33884/jif.v12i01.8721.
A. Sitanggang, Y. Umaidah, R. I. Adam, U. S. Karawang, and T. Timur, “Analisis Sentimen Masyarakat Terhadap Program Makan Siang Gratis Pada Media Sosial X Menggunakan Algoritma Naïve Bayes,” J. Ilmu dan Teknol. Komput., vol. 12, no. 3, 2024, doi: http://dx.doi.org/10.23960/jitet.v12i3.4902.
T. Maulana, Bintang Adhiyaksa, Rifqi Arul Fauzi, Rissa Ilmia Agustin, Siti Alia Azhaar and Rohana, “Komparasi Algoritma Naïve Bayes Dan Svm Untuk Analisis Sentimen Twitter Korupsi Bansos Beras Masa Pandemi,” J. Ilmu dan Teknol. Komput., vol. 12, no. 2, pp. 912–918, 2024, doi: http://dx.doi.org/10.23960/jitet.v12i2.4020.
A. M. Rizqiyah and I. K. D. Nuryana, “Analisis Sentimen Masyarakat terhadap Kebijakan Iuran Tabungan Perumahan Rakyat ( Tapera ) pada Platform X Menggunakan Algoritma Naïve Bayes Classifier dan Support Vector Machine,” JEISBI, vol. 05, no. 03, pp. 298–306, 2024, doi: https://doi.org/10.26740/jeisbi.v5i3.64074.
E. Yuniar and N. Hendrastuty, “Perbandingan Metode Naive Bayes , Random Forest dan SVM Untuk Analisis Sentimen Pada Twitter Tentang Kenaikan Gaji Guru,” Build. Informatics, Technol. Sci., vol. 6, no. 4, pp. 2480–2490, 2025, doi: 10.47065/bits.v6i4.6970.
D. R. Firmansyah and E. Lestariningsih, “Analisis Sentimen Ulasan Aplikasi Smart Campus Unisbank di Google Playstore Menggunakan Algoritma Naive Bayes,” J. Teknol. Inf. dan Komun., vol. 8, no. 2, 2024, doi: https://doi.org/10.35870/jtik.v8i2.1882.
D. N. Agustia, R. R. Suryono, U. T. Indonesia, L. Ratu, and K. B. Lampung, “Comparison Of Naïve Bayes , Random Forest , And Logistic Regression Algorithms For Sentiment Analysis Online Gambling Komparasi Algoritma Naïve Bayes , Random Forest , Dan Logistic Regresion Untuk Analisis,” INOVTEK Polbeng, vol. 10, no. 1, pp. 284–295, 2025, doi: https://doi.org/10.35314/prk93630.
and N. A. V. I. A. Fahrezi, Rudiman, “Analisis Sentimen Twitter Atas Isu Hak Angket Menggunakan Pembobotan TF-IDF dan Algoritma SVM,” Sci-Tech J., vol. 3, pp. 179–192, 2024, doi: https://doi.org/10.56709/stj.v3i2.526.
P. I. Purnama and R. R. Suryono, “Analisis Sentimen Acara Clash of Champions dengan Algoritma Naïve Bayes dan Support Vector Machine,” INOVTEK Polbeng, vol. 6, no. 4, pp. 2277–2287, 2025, doi: 10.47065/bits.v6i4.6575.
N. S. Ramadan and D. Darwis, “Perbandingan Metode Naïve Bayes Dan Svm Untuk Sentimen Analisis Masyarakat Terhadap Serangan Ransomware Pada Data Kip-K,” J. Simika, vol. 8, no. 1, pp. 12–23, 2025, doi: https://doi.org/10.47080/simika.v8i1.3621.
A. M. Ndapamuri, D. Manongga, and A. Iriani, “Analisis Sentimen Ulasan Aplikasi Tripadvisor Dengan Metode Support Vector Machine, K-Nearest Neighbor, Dan Naive Bayes,” INOVTEK Polbeng - Seri Inform., vol. 8, no. 1, p. 127, 2023, doi: 10.35314/isi.v8i1.3260.
I. Iin, R. Supriatna, M. Mulyawan, and D. Rohman, “Penerapan Natural Language Processing Dalam Analisis Sentimen Cawapres 2024 Menggunakan Algoritma Naive Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 1109–1115, 2024, doi: 10.36040/jati.v8i1.8572.
M. A. Hermawan, A. Faqih, G. Dwilestari, T. Informatika, and S. Informasi, “Implementasi Akurasi Model Naive Bayes Menggunakan Smote Dalam Analisis Sentimen Pengguna Aplikasi Brimo,” J. Ilmu dan Teknol. Komput., vol. 13, no. 1, 2025, doi: http://dx.doi.org/10.23960/jitet.v13i1.5748.
L. Ode et al., “Analisis Sentimen Aplikasi Peminjaman Online Berdasarkan Ulasan Pada Play Store Menggunakan Metode Naïve Bayes Dan Support Vector Machine ( Studi Kasus : Adakami Dan Easycash ),” AnoaTIK J. Teknol. Inf. Dan Komput., vol. 2, no. 2, 2024, doi: https://doi.org/10.33772/anoatik.v2i2.71.
J. Anggraini and D. Alita, “Implementasi Metode SVM Pada Sentimen Analisis Terhadap Pemilihan Presiden (Pilpres) 2024 Di Twitter,” J. Inform. J. Pengemb. IT, vol. 9, no. 2, pp. 102–111, 2024, doi: 10.30591/jpit.v9i2.6560.
M. Samantri and Afiyati, “Perbandingan Algoritma Support Vector Machine dan Random Forest untuk Analisis Sentimen Terhadap Kebijakan Pemerintah Indonesia Terkait Kenaikan Harga BBM Tahun 2022,” J. JTIK (Jurnal Teknol. Inf. Dan Komunikasi), vol. 8, no. 1, pp. 1–9, 2024, doi: https://doi.org/10.35870/jtik.v8i1.1202.
“Eskiyaturrofikoh” and R. R. ’Suryono, “Analisis Sentimen Aplikasi X Pada Google Play Store Menggunakan Algoritma Naïve Bayes Dan Support Vector Machine (Svm),” JIPI(Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 3, pp. 1408–1419, 2024, doi: https://doi.org/10.29100/jipi.v9i3.5392.
P. M.Rafli Saputra, “Analisis sentimen twitter terhadap konflik di papua menggunakan perbandingan naive bayes dan svm,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 10, no. 2, pp. 1197–1208, 2025, doi: https://doi.org/10.29100/jipi.v10i2.6180.
M. A. Java, Mohammad Syafrullah, W. Windarto, and P. Painem, “Analisis Sentimen Ulasan Pengguna Aplikasi Threads pada Google Play Store Menggunakan Multinomial Naive Bayes dan Support Vector Machine,” J. Ticom Technol. Inf. Commun., vol. 12, no. 2, pp. 75–80, 2024, doi: 10.70309/ticom.v12i2.112.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Publik Terhadap Danantara di Media Sosial X Menggunakan Naïve Bayes dan Support Vector Machine
Pages: 896-906
Copyright (c) 2025 Fabian Firmanda, Ryan Randy Suryono

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).