Komparasi Algoritma Support Vector Machine dan Decision Tree Dalam Analisis Sentimen Publik Terhadap Penerapan PPN 12%
Abstract
The implementation of the 12% Value-Added Tax (VAT) policy in Indonesia has generated various reactions from the public, both positive and negative. To understand public perception, researchers compared the performance of two algorithms, namely Support Vector Machine (SVM) and Decision Tree, in analyzing sentiment on social media. A total of 7,965 tweets were collected from the X (Twitter) platform using web scraping techniques and processed through several stages, including text cleaning, tokenization, stopword removal, stemming, and data balancing using the SMOTE method to improve model accuracy. The evaluation results showed that SVM achieved 80% accuracy, higher than Decision Tree, which only reached 68%. Based on these findings, it can be concluded that SVM is more effective in analyzing public sentiment regarding the 12% VAT policy. These findings can serve as a reference for the government and relevant stakeholders to better understand public opinion and design more suitable policies. This study also provides opportunities for further development by exploring other algorithms or more advanced data processing techniques to enhance the accuracy and effectiveness of sentiment analysis in the future.
Downloads
References
Republik Indonesia, “Undang-Undang No. 7 Tahun 2021 tentang Harmonisasi Peraturan Perpajakan (HPP),” Republik Indones., vol. 12, no. November, pp. 1–68, 2021.
Asosiasi Penyelenggara Jasa Internet Indonesia (APJII), “Internet Indonesia,” 2024.
N. Fauziah, M. Alkautsar, Y. Suryaman, and F. F. Roji, “Pelabelan VADER Dalam Menganalisis Persepsi Masyarakat Terhadap Kenaikan Tarif PPN di Indonesia,” J. Akunt. dan Keuang. JAK, vol. 12, no. 2, pp. 228–238, 2024.
P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 147, 2021.
H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, 2021.
Aditya Quantano Surbakti, Regiolina Hayami, and Januar Al Amien, “Analisa Tanggapan Terhadap Psbb Di Indonesia Dengan Algoritma Decision Tree Pada Twitter,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 2, no. 2, pp. 91–97, 2021.
A. T. Octa Nuryawan, M. Hasbullah, M. Rizal, M. F. Rajab, and N. Agustina, “Algoritma Decision Tree Untuk Analisis Sentimen Public Terhadap Marketplace Diindonesia,” Naratif J. Nas. Riset, Apl. dan Tek. Inform., vol. 5, no. 1, pp. 18–25, 2023.
L. A. Pramesti and N. Pratiwi, “Analisis Sentimen Twitter Terhadap Program MBKM Menggunakan Decision Tree dan Support Vector Machine,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1145–1154, 2023.
N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021.
Friska Aditia Indriyani, Ahmad Fauzi, and Sutan Faisal, “Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine,” TEKNOSAINS J. Sains, Teknol. dan Inform., vol. 10, no. 2, pp. 176–184, 2023.
M. I. Petiwi, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Gofood Berdasarkan Twitter Menggunakan Metode Naïve Bayes dan Support Vector Machine,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 542, 2022.
N. Agustina, D. H. Citra, W. Purnama, C. Nisa, and A. R. Kurnia, “Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 1, pp. 47–54, 2022.
S. F. N. Hadju and R. Jayadi, “Sentiment analysis of Indonesian e-commerce product reviews using support vector machine based term frequency inverse document frequency,” J. Theor. Appl. Inf. Technol., vol. 99, no. 17, pp. 4316–4325, 2021.
S. Rabbani, D. Safitri, N. Rahmadhani, A. A. F. Sani, and M. K. Anam, “Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 153–160, 2023.
F. D. Adhiatma and A. Qoiriah, “Penerapan Metode TF-IDF dan Deep Neural Network untuk Analisa Sentimen pada Data Ulasan Hotel,” J. Informatics Comput. Sci., vol. xx, pp. 183–193, 2022.
J. H. Joloudari, A. Marefat, M. A. Nematollahi, S. S. Oyelere, and S. Hussain, “Effective Class-Imbalance Learning Based on SMOTE and Convolutional Neural Networks,” Appl. Sci., vol. 13, no. 6, pp. 1–43, 2023.
M. H. Wicaksono, M. D. Purbolaksono, and S. Al Faraby, “Perbandingan Algoritma Machine Learning untuk Analisis Sentimen Berbasis Aspek pada Review Female Daily,” eProceedings Eng., vol. 10, no. 3, pp. 3591–3600, 2023.
R. Riyaddulloh and A. Romadhony, “Normalisasi Teks Bahasa Indonesia Berbasis Kamus Slang Studi Kasus: Tweet Produk Gadget Pada Twitter,” eProceedings Eng., vol. 8, no. 4, pp. 4216–4228, 2021.
A. Syukron, S. Sardiarinto, E. Saputro, and P. Widodo, “Penerapan Metode Smote Untuk Mengatasi Ketidakseimbangan Kelas Pada Prediksi Gagal Jantung,” J. Teknol. Inf. dan Terap., vol. 10, no. 1, pp. 47–50, 2023.
E. Priyanti, “Penerapan Decision Tree Untuk Klasifikasi Tingkat Pendapatan,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 7, no. 1, pp. 7–12, 2022.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Komparasi Algoritma Support Vector Machine dan Decision Tree Dalam Analisis Sentimen Publik Terhadap Penerapan PPN 12%
Pages: 332-343
Copyright (c) 2025 Djalu Bintang Putra, Ryan Randy Suryono

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).