Perbandingan Algoritma Random Forest, KNN, SVM Untuk Analisis Sentimen Pengalaman Belanja Thrift Di X


  • M Rafi Raihandika * Mail Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia
  • Ryan Randy Suryono Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia https://orcid.org/0000-0001-9378-8148
  • (*) Corresponding Author
Keywords: Sentiment Analysis; KNN; Random Forest; SVM; Thrifting; Twitter

Abstract

The thrifting phenomenon is gaining traction, especially among millennials and Generation Z. Along with the increasing interest in thrifting, X social media has emerged as one of the main platforms for people to share experiences and opinions related to thrift shopping. This research aims to analyze people's sentiments about thrift shopping experiences by comparing the performance of Random Forest, Support Vector Machine (SVM), and K-Nearest Neighbors (KNN) algorithms. The dataset used in this study was obtained from Twitter as many as 6,390 tweets collected through crawling techniques with a time span of August 2, 2024 to September 4, 2024. The dataset is then processed to produce clean data. After the cleaning process, the data is divided 80:20 for training and testing. In testing the three algorithms, an accuracy level is obtained that shows how well the model makes predictions. This accuracy measures the extent to which the model successfully predicts the sentiment of the thrifting shopping experience based on the Twitter dataset. The results show that the Random Forest algorithm has the highest accuracy with 95%, precision 97%, recall 78%, and f1-score 85%. SVM achieved 93% accuracy, 93% precision, 72% recall, and 78% f1-score. KNN obtained 89% accuracy, 72% precision, 59% recall, and 61% f1-score. From the results obtained, the Random Forest algorithm shows the best accuracy for sentiment analysis of thrifting experiences on Twitter Indonesia. Its advantage lies in its stable ensemble learning approach, where multiple decision trees are combined to produce more accurate predictions. This ability makes Random Forest effective in handling varied and complex Twitter text data, making it the most reliable algorithm in this context.

Downloads

Download data is not yet available.

References

A. Azzahra and D. Gustian, “Penerapan Algoritma Apriori pada Usaha Thrifting,” Jurnal Komisi (Komputer Dan Sistem Informasi), vol. 1, no. 2, pp. 68–75, 2024, [Online]. Available: https://komisijournal.indiepress.id/index.php/komisi/article/view/10.

S. Wulandari and F. N. Hasan, “Analisis Sentimen Masyarakat Indonesia Terhadap Pengalaman Belanja Thrifting Pada Media Sosial Twitter Menggunakan Algoritma Naïve Bayes,” Jurnal Media Informatika Budidarma, vol. 8, no. 2, p. 768, Apr. 2024, doi: 10.30865/mib.v8i2.7520.

N. Qalbi and Hartini, “Pengaruh Persepsi Harga, Persepsi Kualitas dan Keragaman Produk terhadap Minat Beli Pakaian Bekas (Trifting) di Daerah Sumbawa,” Journal of Nusantara Economic Science (JNES), vol. 1, no. 4, pp. 1–7, 2023, [Online]. Available: https://nafatimahpustaka.org/jnes/article/view/161.

D. A. Firmansyah and D. Damayanti, “Analisis Sentimen Masyarakat Terhadap Thrifting Pada Media Sosial Twitter(X.Com) Menggunakan Metode K-Nearest Neighbor,” Jurnal Jaringan Sistem Informasi Robotik (Jsr), vol . 8, no. 1, pp. 10 – 14, 2024, doi: 10.58486/jsr.v8i1.322.

Hadisaputra, “Tinjauan Pendapatan Penjual Pakaian Bekas (Trifting) di Pasar Wameo Kelurahan Wameo Kecamatan Batupoaro Kota Baubau,” Jurnal Ilmiah Universitas Muhammadiyah Buton, volume 10, no 3, pp. 465–475, 2021, doi.org/10.35326/pencerah.v10i3.5518.

A. Amelia, E. Permatasari, P. J. Amanda Z, F. Sinaga, and H. Antoni, “Peningkatan Daya Saing Industri terhadap Kasus Impor Pakaian Bekas (Trifting),” Jurnal Pendidikan Tambusai, vol. 7, no. 1, pp. 1959–1964, 2023, [Online]. Available: https://jptam.org/index.php/jptam/article/view/6061/5072

P. Kegiatan, M. Ppkm, K. D. Attarik, and N. Safriadi, “Analisis Sentimen Kebijakan Pemberlakuan Terhadap Pertumbuhan Ekonomi Sektor E- Commerce Di Indonesia Menggunakan Metode K-Nearest Neighbor ( KNN ),” Jurnal Informatika dan Teknik Elektro Terapan (JITET), vol. 12, no. 3, 2024, doi.org/10.23960/jitet.v12i3S1.5281.

C. F. Hasri and D. Alita, “Penerapan Metode NaãiVe Bayes Classifier Dan Support Vector Machine Pada Analisis Sentimen Terhadap Dampak Virus Corona Di Twitter,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 3, no. 2, pp. 145–160, 2022, doi: 10.33365/jatika.v3i2.2026.

S. Analisis Kegiatan Trading dengan SVM, K. R. Dan, N. Resti Wardani, S. Saepudin, and C. Warman, “Sentimen Analisis Kegiatan Trading Pada Ap-likasi Twitter dengan Algoritma SVM, KNN Dan Random Forrest,” Jurnal Sains Komputer & Informatika (J-SAKTI), vol 6 no 2, pp. 863-870, 2022, doi.org/10.30645/j-sakti.v6i2.

I. Mahendrata, N. D. H. Sadikin, N. D. H. Sadikin, N. Marco, and Y. Ramdhani, “Sentimen Analisis Marketplace di Indonesia Menggunakan Algoritma Random Forest,” Jurnal PRODUKTIF, vol. 7, no. 1, pp. 603–609, 2023.

P. E. Shopee and S. Watmah, “Komparasi Metode K-NN, Support Vector Machine, Dan Random Forest Pada E-Commerce Shopee,” INSANtek – Jurnal Inovasi dan Sains Teknik Elektro, vol. 2, no. 1, pp. 15–21, 2021, doi: 10.31294/instk.v2i1.419.

R. Safitri, I. Ali, and N. Rahaningsih, “Analisis Sentimen Terhadap Tren Fashion Di Media Sosial Dengan Metode Support Vector Machine (Svm),” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 2, pp. 1746–1754, 2024, doi: 10.36040/jati.v8i2.9045.

M. R. R. Lillah, D. S. Maylawati, W. B. Zulfikar, W. Uriawan, and A. Wahana, “Implementasi Algoritma K-Nearest Neighbor (KNN) untuk analisis sentimen pengguna aplikasi Tokopedia,” Intellect : Indonesian Journal of Learning and Teachnological Innovation, vol. 02, no. 02, pp. 171–184, 2023, doi: 10.57255/intellect.v2i2.296

E. Hasibuan and E. A. Heriyanto, “Analisis Sentimen Pada Ulasan Aplikasi Amazon Shopping Di Google Play Store Menggunakan Naive Bayes Classifier,” Jurnal Teknik dan Science JTS, vol. 1, no. 3, 2024, doi:10.56127/jts.v1i3.434.

Y. Afrillia, L. Rosnita, and D. Siska, “Analisis Sentimen Ciutan Twitter Terkait Penerapan Permendikbudristek Nomor 30 Tahun 2021 Menggunakan TextBlob dan Support Vector Machine,” G-Tech: Jurnal Teknologi Terapan, vol. 6, no. 2, pp. 387–394, Oct. 2022, doi: 10.33379/gtech.v6i2.1778.

R. Vindua and A. U. Zailani, “Analisis Sentimen Pemilu Indonesia Tahun 2024 Dari Media Sosial Twitter Menggunakan Python,” JURIKOM (Jurnal Riset Komputer), vol. 10, no. 2, p. 479, Apr. 2023, doi: 10.30865/jurikom.v10i2.5945.

H. Ali, N. Hendrastuty, C. Science, and U. T. Indonesia, “Comparison Of Naïve Bayes Classifier, Support Vector Machine, Random Forest Algorithms For Public Sentiment Analysis Of Kip-K Program On Twitter,” Jurnal Teknik Informatika (JUTIF), vol. 5, no. 6, pp. 1701–1712, 2024, doi.org/10.52436/1.jutif.2024.5.6.4030.

H. Syah and A. Witanti, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (Svm),” Jurnal Sistem Informasi dan Informatika (Simika), vol. 5, no. 1, pp. 59–67, 2022, doi: 10.47080/simika.v5i1.1411.

H. Harnelia, “Analisis Sentimen Review Skincare Skintific Dengan Algoritma Support Vector Machine (Svm),” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, 2024, doi: 10.23960/jitet.v12i2.4095.

S. Syafrizal, M. Afdal, and R. Novita, “Analisis Sentimen Ulasan Aplikasi PLN Mobile Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, pp. 10–19, 2023, doi: 10.57152/malcom.v4i1.983.

A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.

J. Supriyanto, D. Alita, and A. R. Isnain, “Penerapan Algoritma K-Nearest Neighbor (K-NN) Untuk Analisis Sentimen Publik Terhadap Pembelajaran Daring,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 4, no. 1, pp. 74–80, 2023, doi: 10.33365/jatika.v4i1.2468.

D. S. Ningsih and R. R. Suryono, “Comparison Of Naïve Bayes And Information Gain Algorithms In Cyberbullying Sentiment Analysis On Twitter,” Jurnal Teknik Informatika (JUTIF), vol. 5, no. 4, pp. 1085–1091, 2024, doi: 10.52436/1.jutif.2024.5.4.1908.

T. Fadiyah Basar, D. E. Ratnawati, and I. Arwani, “Analisis Sentimen Pengguna Twitter terhadap Pembayaran Cashless menggunakan Shopeepay dengan Algoritma Random Forest,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 3, pp. 1426-1433, 2022, [Online]. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/10830.

I. Yunanto and S. Yulianto, “Twitter Sentiment Analysis Pedulilindungi Application Using Naïve Bayes And Support Vector Machine,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 4, pp. 807–814, Aug. 2022, doi: 10.20884/1.jutif.2022.3.4.292.

Friska Aditia Indriyani, Ahmad Fauzi, and Sutan Faisal, “Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine,” TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika, vol. 10, no. 2, pp. 176–184, 2023, doi: 10.37373/tekno.v10i2.419.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Algoritma Random Forest, KNN, SVM Untuk Analisis Sentimen Pengalaman Belanja Thrift Di X

Dimensions Badge
Article History
Submitted: 2025-01-20
Published: 2025-03-01
Abstract View: 20 times
PDF Download: 6 times
How to Cite
Raihandika, M., & Suryono, R. (2025). Perbandingan Algoritma Random Forest, KNN, SVM Untuk Analisis Sentimen Pengalaman Belanja Thrift Di X. Building of Informatics, Technology and Science (BITS), 6(4), 2403-2412. https://doi.org/10.47065/bits.v6i4.6797
Issue
Section
Articles