Perbandingan Algoritma Naive Bayes dan SVM dalam Analisis Sentimen Pengguna AI di Platform X
Abstract
The rapid development of artificial intelligence (AI) has also had a significant impact on various aspects of life, including interactions on social media platforms such as Platform X. On this platform, users actively discuss various topics related to AI, from the benefits to the challenges it poses. Understanding how the public responds to AI technology is important for developers, researchers, and policy makers in order to design strategies that are more in line with the needs and expectations of the community. This study aims to evaluate and compare the performance of two algorithms commonly used in sentiment analysis, namely Naïve Bayes and Support Vector Machine (SVM). Data were collected through crawling techniques using Google Colab, which resulted in 9,183 entries. Before the analysis was carried out, the data went through a series of initial processing stages, including text cleaning, letter normalization, tokenization, removing frequently used words (stopword removal), and stemming to simplify words. The results of the analysis show that SVM has advantages in terms of accuracy and capability, namely 96% accuracy in handling complex data, while Naïve Bayes is faster in the computational process and efficient for large datasets, resulting in an accuracy of 84% smaller than SVM accuracy. The assessment is carried out using accuracy, precision, recall, and F1-score metrics based on the confusion matrix.
Downloads
References
Arnadi Arnadi, Aslan Aslan, & Arnes Yuli Vandika. “Penggunaan Kecerdasan Buatan Untuk Personalisasi Pengalaman Belajar,” Jurnal Ilmu Pendidikan dan Kearipan Lokal , vol. 15, no. 1, pp. 37 48, 2024, https://www.jipkl.com/index.php/JIPKL/article/view/101
Siti Masrichah, “Ancaman Dan Peluang Artificial Intelligence (AI),” Khatulistiwa J. Pendidik. dan Sos. Hum., vol. 3, no. 3, pp. 83–101, 2023, doi: 10.55606/khatulistiwa.v3i3.1860.
A. F. Adhani and A. Aripudin, “Perspektif Generasi Z di Platform X Terhadap Penurunan Angka Pernikahan di Indonesia.,” J-KIs J. Komun. Islam, vol. 5, no. 1, pp. 185–198, 2024,doi: https://doi.org/10.53429/j-kis.v5i1.1001
D. Ananda and R. R. Suryono, “Analisis Sentimen Publik Terhadap Pengungsi Rohingya di Indonesia dengan Metode Support Vector Machine dan Naïve Bayes,” J. Media Inform. Budidarma, vol. 8, no. 2, p. 748, 2024, doi: 10.30865/mib.v8i2.7517.
C. F. Hasri and D. Alita, “Penerapan Metode Naive Bayes Classifier Dan Support Vector Machine Pada Analisis Sentimen Terhadap Dampak Virus Corona Di Twitter,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 3, no. 2, pp. 145–160, 2022, doi: 10.33365/jatika.v3i2.2026.
R. R. Pratama, R. R. Suryono, “Performance Comparison Of Naive Bayes , Support Vector Machine And Random Forest Algorithms For Apple Vision Pro Sentiment Analysis,” JUTIF, vol. 6, no. 1, pp. 31–39, 2025, https://jutif.if.unsoed.ac.id/index.php/jurnal/article/download/4035/716/
W. Ningsih, B. Alfianda, R. Rahmaddeni, and D. Wulandari, “Perbandingan Algoritma SVM dan Naïve Bayes dalam Analisis Sentimen Twitter pada Penggunaan Mobil Listrik di Indonesia,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 556–562, 2024, doi: 10.57152/malcom.v4i2.1253.
D. Atmajaya, A. Febrianti, and H. Darwis, “Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter,” Indones. J. Comput. Sci., vol. 12, no. 4, pp. 2173–2181, 2023, doi: 10.33022/ijcs.v12i4.3341.
N. S. Ramadan and D. Darwis, “Perbandingan Metode Naïve Bayes Dan Svm Untuk Sentimen Analisis Masyarakat Terhadap Serangan Ransomware Pada Data Kip-K,” Simika, vol. 8, no. 1, pp. 12–23, 2025, doi: https://doi.org/10.47080/simika.v8i1.3621
Gishella Septania Al-Husna, Dian Asmarajati, Iman Ahmad Ihsannuddin, and Rina Mahmudati, “Perbandingan Metode Naïve Bayes Dan Support Vector Machine Untuk Analisis Sentimen Pada Ulasan Pengguna Aplikasi Linkedin,” STORAGE J. Ilm. Tek. dan Ilmu Komput., vol. 3, no. 2, pp. 139–144, 2024, doi: 10.55123/storage.v3i2.3602.
Rayuwati, Husna Gemasih, and Irma Nizar, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid,” Jural Ris. Rumpun Ilmu Tek., vol. 1, no. 1, pp. 38–46, 2022, doi: 10.55606/jurritek.v1i1.127.
Z. Rani and B. K. Khotimah, “Sapi Di Twitter Menggunakan Kombinasi Metode K-Means Dan Support Vector Machine,” Jitet, vol. 13, no. 1, 2025, doi: http://dx.doi.org/10.23960/jitet.v13i1.5685
H. S. W. Hovi, A. Id Hadiana, and F. Rakhmat Umbara, “Prediksi Penyakit Diabetes Menggunakan Algoritma Support Vector Machine (SVM),” Informatics Digit. Expert, vol. 4, no. 1, pp. 40–45, 2022, doi: 10.36423/index.v4i1.895.
A. Supian, B. Tri Revaldo, N. Marhadi, L. Efrizoni, and R. Rahmaddeni, “Perbandingan Kinerja Naïve Bayes Dan Svm Pada Analisis Sentimen Twitter Ibukota Nusantara,” J. Ilm. Inform., vol. 12, no. 01, pp. 15–21, 2024, doi: 10.33884/jif.v12i01.8721.
I. S. K. Idris, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),” Jambura J. Electr. Electron. Eng., vol. 5, no. 1, pp. 32–35, 2023, doi: 10.37905/jjeee.v5i1.16830.
D. R. Bakti, R. R. Suryono, “Sentiment Analysis Of Post-Covid Online Education Among Gen Z With Various Classification Methods,” Jutif, vol. 6, no. 1, pp. 301–310, 2025, https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/4003
D. B. Reynaldi and R. R. Suryono, “Comparison Of Accuracy Of Various Text Classification Methods In Sentiment Analysis Of E-Stamps At X Komparasi Akurasi Berbagai Metode Klasifikasi Teks Dalam Analisis Sentimen E-Materai Di X,” Jutif, vol. 6, no. 1, pp. 281–290, 2025, https://jutif.if.unsoed.ac.id/index.php/jurnal/article/download/3999/739/
A. Setiawan and R. R. Suryono, “Analisis Sentimen Ibu Kota Nusantara menggunakan Algoritma Support Vector Machine dan Naïve Bayes,” Edumatic J. Pendidik. Inform., vol. 8, no. 1, pp. 183–192, 2024, doi: 10.29408/edumatic.v8i1.25667.
S. Syafrizal, M. Afdal, and R. Novita, “Analisis Sentimen Ulasan Aplikasi PLN Mobile Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, pp. 10–19, 2023, doi: 10.57152/malcom.v4i1.983.
M. Taufik Sugandi, Martanto, and U. Hayati, “Analisis Sentimen Komentar Pengguna Youtube terhadap Kebijakan Baru Badan Penyelenggara Jaminan Kesehatan Sosial Menggunakan Naïve Bayes,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 218–227, 2024, doi: https://publikasiilmiah.unwahas.ac.id/JINRPL/article/view/10301
Aditya, eka, Astawa, I. G. K., Limbong, K. G., Indrawan, G., Indrawan, G., & Gunawan, M. A. O. , “Analisis Sentimen Pengguna Sistem E-Kinerja Desa Kabupaten Jembrana Menggunakan Metode Naive Bayes,“. Jurnal Teknologi Dan Sistem Informasi Bisnis, Vol 7, No 1, pp 8-14. https://doi.org/10.47233/jteksis.v7i1.1693
K. Shin, T. Yong, “Analisis Sentimen Kepuasan Publik Terhadap Masa,” JTIK, vol. 9, no. March, pp. 149-158, 2025, https://journal.lembagakita.org/index.php/jtik/article/download/3020/2425/10976
C. F. Alifa and D. Alita, “Analisis Opini Publik Tentang Boikot Produk Pro-Israel di Twitter Berbahasa Indonesia Menggunakan Metode SVM,” J. Inform. J. Pengemb. IT, vol. 9, no. 2, pp. 112–120, 2024, doi: 10.30591/jpit.v9i2.6559.
Puspitasari, R., & Dwi Indriyanti, A, ”Analisis Sentimen Opini Publik Terhadap Kebijakan Baru Skripsi Pada Media Sosial Twitter Menggunakan Metode Naive Bayes, ” Journal of Emerging Information System and Business Intelligence (JEISBI), Vol 5, No 3, pp 37–42, https://ejournal.unesa.ac.id/index.php/JEISBI/article/view/61273
R. Aryanti, T. Misriati, and A. Sagiyanto, “Analisis Sentimen Aplikasi Primaku Menggunakan Algoritma Random Forest dan SMOTE untuk Mengatasi Ketidakseimbangan Data,” J. Comput. Syst. Informatics, vol. 5, no. 1, pp. 218–227, 2023, doi: 10.47065/josyc.v5i1.4562.
R. R. S. Natasha, “Sentiment Analysis Of The Influence Of The Korean Wave In Indonesia Using The Naive Bayes Method And Support Vector Machine,” Jurnal Inovtek Polbeng, vol. 10, no. 1, pp. 308–319, 2025, doi: https://doi.org/10.35314/85x4wd90
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Algoritma Naive Bayes dan SVM dalam Analisis Sentimen Pengguna AI di Platform X
Pages: 2624-2634
Copyright (c) 2025 Noval Dinda Firdaus, Ryan Randy Suryono

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).