Analisis Sentimen Acara Clash of Champions dengan Algoritma Naïve Bayes dan Support Vector Machine
Abstract
With the advancement of information and communication technology, it has become easier for people to exchange information and access educational content, including through online learning platforms such as Ruangguru. One of Ruangguru's flagship programs is Clash of Champions, which attracts public attention and generates various sentiments on social media. However, analyzing public sentiment towards this program faces challenges, especially due to the imbalance in the amount of data between majority and minority sentiments, which may affect the accuracy of sentiment analysis models. This study aims to compare the performance of two algorithms, namely Naïve Bayes and Support Vector Machine (SVM), in analyzing public sentiment towards this program. Using 5,226 tweets from social media X, the data was balanced using the Synthetic Minority Oversampling Technique (SMOTE) method to overcome the data imbalance problem. After the data was divided into 80% for training and 20% for testing, the results showed that before using SMOTE, Naïve Bayes had an accuracy of 78%, while SVM reached 82%. After SMOTE was applied, Naïve Bayes' accuracy increased to 79%, while SVM rose to 84%. In addition to accuracy, significant improvements were also seen in precision, recall, and f1-score, especially for positive sentiments. The results show that SVM is superior to Naïve Bayes, both in accuracy and other evaluation metrics. This research provides an in-depth understanding of the effectiveness of algorithms in sentiment analysis on entertainment-based educational programs and is expected to be a reference for the development of similar models in the future.
Downloads
References
D. A. F. Az Zahra, A. Subarno, and W. Winarno, “Analisis penggunaan teknologi informasi dalam pembelajaran daring di SMA Negeri 5 Surakarta,” JIKAP (Jurnal Informasi dan Komunikasi Administrasi Perkantoran), vol. 7, no. 1, p. 31, 2023, doi: 10.20961/jikap.v7i1.60919.
I. Nurul Hassanah, S. Faisal, A. Mutoi Siregar, U. Buana Perjuangan Karawang Jl HSRonggo Waluyo, T. Timur, and J. Barat, “Perbandingan Algoritma Support Vector Machine Dengan Decision Tree Pada Aplikasi Ruang Guru,” Kumpulan jurnaL Ilmu Komputer (KLIK), vol. 10, no. 1, pp. 39–50, 2023.
Sudarta, “Upaya Meningkatkan Keaktifan Peserta Didik Kelas IV SDN Madyopuro 1 Dengan Menggunakan Media Pembelajaran Interaktif Dengan Clash Of Champion Dari Platform Ruang Guru,” Seminar Nasional dan Prosiding PPG Unikama,vol. 16, no. 1, pp. 1–23, 2022.
S. Helmiyah and A. Verdian, “Analisis Sentimen Terhadap Minat Belajar pada Tayangan Acara CoC by Ruangguru Berdasarkan Tweets Menggunakan Metode NLP dan Model BERT: Analisis Sentimen Terhadap Minat Belajar pada Tayangan Acara CoC by Ruangguru Berdasarkan Tweets Menggunakan Metode NLP,” Jurnal Pendidikan Rosalia, vol. 7, no. 2, pp. 138–149, 2024.
R. Mas, R. W. Panca, K. Atmaja1, and W. Yustanti2, “Analisis Sentimen Customer Review Aplikasi Ruang Guru dengan Metode BERT (Bidirectional Encoder Representations from Transformers),” Jeisbi, vol. 02, no. 3, pp. 55–62, 2021.
K. A. Sari and G. Reftantia, “Hegemoni ‘ Clash of Champions Ruang Guru ’ di Tengah Maraknya Tayangan Non Edukatif,” Jurnal Iapa Proceedings Conference, pp. 130–145, 2024.
Y. Caesar, I. Sabastian, A. Kindarto, and A. Fathurrohman, “Analisis Sentiment Masyarakat Terhadap Clash of Champions Ruang Guru Menggunakan Metode Support Vector Machine ( SVM ),” Prosiding, Seminar Nasional Unimus, pp. 820–838, 2024.
A. Fauzi and A. H. Yunial, “Analisis Sentimen US Airline Pada Media Sosial Twitter/X Menggunakan Perbandingan Algoritma Data Mining,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 10, no. 2, p. 277, 2024, doi: 10.26418/jp.v10i2.76024.
E. F. Baharsyah, A. Armanto, T. H. B. Aviani, and C. Wulandari, “Analisis Sentimen Pengguna Terhadap Aplikasi Belajar Online Ruang Guru Pada Ulasan Google Play Store Menggunakan Algoritma Naïve Bayes dan Support Vector Machine,” Innovative: Journal Of Social Science Research, vol. 4, no. 3, pp. 2965–2979, 2024, [Online]. Available: https://j-innovative.org/index.php/Innovative/article/view/10769
I. Novitasari, T. B. Kurniawan, D. A. Dewi, and Misinem, “Analisis sentimen masyarakat terhadap tweet ruang guru menggunakan algoritma naive bayes classifier (NBC) [Analysis of public sentiment towards ruang guru’s tweets using the Naive Bayes Classifier (NBC) algorithm],” Jurnal Mantik, vol. 6, no. 3, pp. 2685–4236, 2022.
A. Wibowo, Firman Noor Hasan, Rika Nurhayati, and Arief Wibowo, “Analisis Sentimen Opini Masyarakat Terhadap Keefektifan Pembelajaran Daring Selama Pandemi COVID-19 Menggunakan Naïve Bayes Classifier,” Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi, vol. 4, pp. 239–248, 2022, doi: 10.35814/asiimetrik.v4i1.3577.
N. Nurdin, L. Jama, T. Z. Magnus, R. Priskila, and V. H. Pranatawijaya, “Analisis Sentimen Dampak Artificial Intelligence (AI) Untuk Pendidikan Pada X Menggunakan Naïve Bayes,” Jurnal Informatika Upgris, vol. 10, no. 1, pp. 15–19, 2024, doi: 10.26877/jiu.v10i1.18867.
A. A. Rashifa, H. Marcos, P. Subarkah, and S. A. Sholikhatin, “Comparison of Svm and Naïve Bayes Classifier Algorithms on Student Interest in Joining Msib,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 10, no. 1, pp. 116–123, 2024, doi: 10.33480/jitk.v10i1.5270.
S. Pokhrel, “Analisis Sentimen Terhadap Iphone 16 Pada Data Twitter Menggunakan Orange Data Mining,” Kohesi: Jurnal Multidisiplin Saintek, vol. 15, no. 1, pp. 37–48, 2024.
S. Z. Rozaan, M. R. Andrianto, R. S. Purnama, N. I. Ramadhan, and W. Putra, “Analisis Sentimen terhadap Kenaikan UKT di Indonesia pasca Terpilihnya Capres 02 menggunakan VADER,” Seminar Nasional Informatika Bela Negara (SANTIKA), vol. 4, pp. 88–92, 2024.
J. Sosial, B. Di, and K. Pertanahan, “Analisis Sentimen Respons Twitter Terhadap Persyaratan Badan Penyelenggara Jaminan Sosial (Bpjs) Di Kantor Pertanahan,” Jurnal widya bhumi, vol. 3, no. 2, pp. 113–136, 2023.
A. A. Syam, G. H. M, A. Salim, D. F. Surianto, and M. F. B, “Analisis teknik preprocessing pada sentimen masyarakat terkait konflik israel-palestina menggunakan support vector machine,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) vol. 9, no. 3, pp. 1464–1472, 2024, doi.org/10.29100/jipi.v9i3.5527
A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.
H. Syah and A. Witanti, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (Svm),” Jurnal Sistem Informasi dan Informatika (Simika), vol. 5, no. 1, pp. 59–67, 2022, doi: 10.47080/simika.v5i1.1411.
M. H. Wicaksono, M. D. Purbolaksono, and S. Al Faraby, “Perbandingan Algoritma Machine Learning untuk Analisis Sentimen Berbasis Aspek pada Review Female Daily,” eProceedings of Engineering, vol. 10, no. 3, pp. 3591–3600, 2023.
A. D. Adhi Putra, “Sentiment Analysis on User Reviews of the Bibit and Bareksa Application with the KNN Algorithm,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 8, no. 2, pp. 636–646, 2021.
O. I. Gifari, Muh. Adha, F. Freddy, and F. F. S. Durrand, “Film Review Sentiment Analysis Using TF-IDF and Support Vector Machine,” Journal of Information Technology, vol. 2, no. 1, pp. 36–40, 2022.
Muhammad Daffa Al Fahreza, Ardytha Luthfiarta, Muhammad Rafid, and Michael Indrawan, “Analisis Sentimen: Pengaruh Jam Kerja Terhadap Kesehatan Mental Generasi Z,” Journal of Applied Computer Science and Technology, vol. 5, no. 1, pp. 16–25, 2024, doi: 10.52158/jacost.v5i1.715.
E. A. Lisangan, A. Gormantara, and R. Y. Carolus, “Implementasi Naive Bayes pada Analisis Sentimen Opini Masyarakat di Twitter Terhadap Kondisi New Normal di Indonesia,” KONSTELASI: Konvergensi Teknologi dan Sistem Informasi, vol. 2, no. 1, pp. 23–32, 2022, doi: 10.24002/konstelasi.v2i1.5609.
A. Baita, Y. Pristyanto, and N. Cahyono, “Analisis Sentimen Mengenai Vaksin Sinovac Menggunakan Algoritma Support Vector Machine (Svm) Dan K-Nearest Neighbor (Knn),” Infos, vol. 4, no. 2, pp. 42–42, 2021.
A. Setiawan and R. R. Suryono, “Analisis Sentimen Ibu Kota Nusantara menggunakan Algoritma Support Vector Machine dan Naïve Bayes,” Edumatic: Jurnal Pendidikan Informatika, vol. 8, no. 1, pp. 183–192, 2024, doi: 10.29408/edumatic.v8i1.25667.
R. R. S. Putri Kumala Sari, “Komparasi Algoritma Support Vector Machine Dan Random Forest Untuk Analisis Sentimen Metaverse,” Jurnal MNEMONIC, vol. 7, no. 1, pp. 31–39, 2024.
A. Nofandi, N. Y. Setiawan, and D. W. Brata, “Analisis sentimen ulasan pelanggan dengan Metode Support Vector Machine (SVM) untuk peningkatan kualitas layanan pada Restoran Warung Wareg,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 1, pp. 458–466, 2023, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/12218
M. F. N. Ilham, K. D. Annurrahma, P. Wirayuda, and R. Rudiman, “Analisis Kepuasaan Pengguna Aplikasi Donorku Dengan Pendekatan Metode Random Forest Dengan Smote”, Jurnal Informatika Teknologi Dan Sains (JINTEKS), vol. 6, no. 3, pp. 508-513, Aug. 2024, doi.org/10.51401/jinteks.v6i3.4229.
E. A. Putri, “Penerapan Algoritma Naïve Bayes pada Analisis Sentimen Aplikasi Traveloka pada Platform Playstore,” vol. 6, no. 3, pp. 1467–1476, 2024, doi: 10.47065/bits.v6i3.6130.
Eskiyaturrofikoh and R. R. ’Suryono, “Analisis Sentimen Aplikasi X Pada Google Play Store Menggunakan Algoritma Naïve Bayes Dan Support Vector Machine (Svm),” JIPI(Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 3, pp. 1408–1419, 2024, [Online]. Available: https://www.jurnal.stkippgritulungagung.ac.id/index.php/jipi/article/view/5392
A. Y. P. Yusuf and R. Sari, “Implementasi Algoritma Naïve Bayes Untuk Klasifikasi Pemahaman Program MBKM Bagi Mahasiswa,” Journal of Informatic and Information Security, vol. 3, no. 2, pp. 171–180, 2022, doi: 10.31599/jiforty.v3i2.1713.
A. Miftahusalam, A. F. Nuraini, A. A. Khoirunisa, and H. Pratiwi, “Comparison of Random Forest, Naïve Bayes, and Support Vector Machine Algorithms in Analyzing Twitter Sentiment Regarding Public Opinion on the Removal of Honorary Employees,” Seminar Nasional Official Statistics, vol. 2022, no. 1, pp. 563–572, 2022.
S. Rabbani, D. Safitri, N. Rahmadhani, A. A. F. Sani, and M. K. Anam, “Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 2, pp. 153–160, 2023, doi: 10.57152/malcom.v3i2.897.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Acara Clash of Champions dengan Algoritma Naïve Bayes dan Support Vector Machine
Pages: 2277-2287
Copyright (c) 2025 Putri Intan Purnama, Ryan Randy Suryono

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).