Perbandingan Algoritma Naïve Bayes, Random Forest, dan SVM Untuk Analisis Sentiment Aplikasi PLN Mobile Pada Google Play Store


Keywords: Sentiment Analysis; PLN Mobile; Playstore; SMOTE; Naive Bayes; Random Forest; SVM

Abstract

PLN Mobile is a digital innovation developed by PT PLN (Persero) to provide electricity services through mobile devices. Many users submit their complaints and reviews on the Google Play Store. This study aims to analyze user sentiment towards the PLN Mobile application using three classification methods: Naïve Bayes, Random Forest, and Support Vector Machine (SVM). A total of 19,870 reviews that have gone through the preprocessing stage were analyzed in this study. Model performance was evaluated using accuracy, precision, recall, and F1-score metrics. The SMOTE technique was applied to address the imbalance of sentiment classes. The results showed that before the implementation of SMOTE, SVM had the best performance with an accuracy of 92%, followed by Random Forest 79%, and Naïve Bayes 62%. After the implementation of SMOTE, SVM performance increased to 95%, Random Forest to 85%, while Naïve Bayes remained at 62%. Other evaluation metrics such as recall and F1-score also showed significant improvements after the implementation of SMOTE, especially for negative and neutral sentiments. These results show that SMOTE is able to improve the accuracy and balance of model performance, as well as provide important insights into public perception of the PLN Mobile application.

Downloads

Download data is not yet available.

References

H. Faisal, A. Febriandirza, and F. N. Hasan, “Analisis Sentimen Terkait Ulasan Pada Aplikasi PLN Mobile Menggunakan Metode Support Vector Machine,” KESATRIA J. Penerapan Sist. Inf. (Komputer Manajemen), vol. 5, no. 1, pp. 303–312, 2024. doi: https://doi.org/10.30645/kesatria.v5i1.339

Ihsan Zulfahmi, “Analisis Sentimen Aplikasi PLN Mobile Menggunakan Metode Decission Tree,” J. Penelit. Rumpun Ilmu Tek., vol. 3, no. 1, pp. 11–21, 2023, doi: 10.55606/juprit.v3i1.3096.

U. Brawijaya, K. R. Hilal, N. Y. Setiawan, and D. E. Ratnawati, “Fakultas Ilmu Komputer Analisis Sentimen Berbasis Aspek Untuk Pengguna PLN Mobile Pada Google Playstore Menggunakan Metode Support Vector Machine (SVM),” JPTIIK, vol. 1, no. 1, pp. 2548–964, 2017

H. B. Tambunan and T. W. D. Hapsari, “Analisis Opini Pengguna Aplikasi New PLN Mobile Menggunakan Text Mining,” Petir, vol. 15, no. 1, pp. 121–134, 2021, doi: 10.33322/petir.v15i1.1352.

A. Komarudin and A. M. Hilda, “Analisis Sentimen Ulasan Aplikasi Identitas Kependudukan Digital Pada Play Store Menggunakan Metode Naïve Bayes,” Comput. Sci., vol. 4, no. 1, pp. 28–36, 2024, doi: 10.31294/coscience.v4i1.2955.

H. Tuhuteru and A. Iriani, “Analisis Sentimen Perusahaan Listrik Negara Cabang Ambon Menggunakan Metode Support Vector Machine dan Naive Bayes Classifier,” J. Inform. J. Pengemb. IT, vol. 3, no. 3, pp. 394–401, 2018, doi: 10.30591/jpit.v3i3.977.

C. Mario, R. R. Suryono, “Public Sentiment Analysis on Dirty Vote Movie on YouTube using Random Forest and Naïve Bayes,” Jurnal INOVTEX Polbeng, vol. 10, no. 1, pp. 111–122, 2025. doi: https://doi.org/10.35314/ev9j2g33

S. Syafrizal, M. Afdal, and R. Novita, “Analisis Sentimen Ulasan Aplikasi PLN Mobile Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, pp. 10–19, 2023, doi: 10.57152/malcom.v4i1.983.

H. Nalatissifa, W. Gata, S. Diantika, and K. Nisa, “Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja,” J. Inform. Univ. Pamulang, vol. 5, no. 4, p. 578, 2021, doi: 10.32493/informatika.v5i4.7575.

A. Carla and H. Soetanto, “Implementasi Text Mining untuk Analisis Sentimen pada Pengguna PLN Mobile Menggunakan Metode Naïve Bayes,” Bit (Fakultas Teknol. Inf. Univ. Budi Luhur), vol. 21, no. 1, p. 72, 2024, doi: 10.36080/bit.v21i1.2974.

Imaniar Ikko Mulya Rizky, Suhendro Yusuf Irianto, and Sriyanto, “Perbandingan Kinerja Algoritma Naive Bayes, Support Vector Machine dan Random forest untuk Prediksi Penyakit Ginjal Kronis,” Semin. Nas. Has. Penelit. dan Pengabdi. Masy., vol. 18, pp. 139–151, 2023.

Sari, Putri Kumala, and Ryan Randy Suryono. "Komparasi algoritma Support Vector Machine dan Random Forest untuk analisis sentimen metaverse." Jurnal Mnemonic 7.1 (2024): 31-39. https://doi.org/10.36040/mnemonic.v7i1.8977

R. R. Pratama, R. R. Suryono, “Performance Comparison Of Naïve Bayes, Support Vector Machine And Random Forest Algorithm For Apple Vision Pro Sentiment Analysis,” JUTIF, vol. 6, no. 1, pp. 31–39, 2025.doi: https://doi.org/10.52436/1.jutif.2025.6.1.4035

B. Hakim, “Analisa Sentimen Data Text Preprocessing Pada Data Mining Dengan Menggunakan Machine Learning,” JBASE - J. Bus. Audit Inf. Syst., vol. 4, no. 2, pp. 16–22, 2021, doi: 10.30813/jbase.v4i2.3000.

I. N. Rizki, D. Prayoga, M. L. Puspita, and M. Q. Huda, “Implementasi Exploratory Data Analysis Untuk Analisis Dan Visualisasi Data Penderita Stroke Kalimantan Selatan Menggunakan Platform Tableau,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 1, 2024, doi: 10.23960/jitet.v12i1.3856.

F. A. Artanto, “Implementasi Algoritma Random Forest dan Model Bag of Words Dalam Analisis Sentimen Mengenai E-Materai,” Jurnal Satesi, vol. 4, no. 2, pp. 139–145, 2024, doi: 10.54259/satesi.v4i2.3240.

Z. Efendy, “Normalisasi dalam Desain Database,” J. CoreIT, vol. 4, no. 1, pp. 34–43, 2018.

U. Pujianto, I. A. E. Zaeni, and K. I. Rasyida, “Comparison of Naive Bayes and Random Forests Classifier in the Classification of News Article Popularity as Learning Material,” Proc. 1st UMGESHIC Int. Semin. Heal. Soc. Sci. Humanit. (UMGESHIC-ISHSSH 2020), vol. 585, pp. 229–242, 2021, doi: 10.2991/assehr.k.211020.036.

A. Santosa, I. Purnamasari, and Mayasari Rini, “Pengaruh Stopword Removal dan StemmingTerhadap Performa Klasifikasi Teks KomentarKebijakan New Normal Menggunakan AlgoritmaLSTM,” J. Sains Komput. Inform., vol. 6, pp. 81–93, 2022. doi: http://dx.doi.org/10.30645/j-sakti.v6i1.427

Aminullah, Zulkifli, Deni Arifianto, and Habibatul Azizah Al Faruq, “Lexicon-Based Approach Pada Analisis Sentimen Ulasan Airbnb Menggunakan Vader Sentiment Lexicon-Based Approach to Sentiment Analysis of Airbnb Reviews Using Vader Sentiment,” Jurnal Smart Teknologi, vol. 5, no. 4, pp. 558–566, 2024.

Y. A. Prasetyo, E. Utami, and A. Yaqin, “Pengaruh Komposisi Split Data Terhadap Performa Akurasi Analisis Sentimen Algoritma Naïve Bayes dan SVM,” Journal of Electrical Engineering and Computer, vol. 6, no. 2, pp. 382–390, 2024, doi: 10.33650/jeecom.v4i2.

S. Maula Chamzah, M. Lestandy, N. Kasan, and A. Nugraha, “Penerapan Synthetic Minority Oversampling Technique (SMOTE) untuk Imbalance Class pada Data Text Menggunakan kNN,” Syntax J. Inform., vol. 11, no. 02, pp. 56–67, 2022, doi: 10.35706/syji.v11i02.6940.

D. N. Agustia, R. R. Suryono, “Comparison of Naïve Bayes, Random Forest, and Logistic Regression Algorithms for Sentiment Analysis Online Gambling” Jurnal INOVTEK Polbeng, vol. 10, no. 1, pp. 284–295, 2025: https://doi.org/10.35314/prk93630

Y. Asri, W. N. Suliyanti, D. Kuswardani, and M. Fajri, “Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes dalam menganalisis sentimen data ulasan PLN Mobile,” Petir, vol. 15, no. 2, pp. 264–275, 2022, doi: 10.33322/petir.v15i2.1733.

B. F. S. Supriyanto and S. Rosalin, “Analisis Sentimen Program Merdeka Belajar dengan Text Analysis Wordcloud & Word Frequency,” J. Minfo Polgan, vol. 12, no. 1, pp. 25–32, 2023, doi: 10.33395/jmp.v12i1.12312.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Algoritma Naïve Bayes, Random Forest, dan SVM Untuk Analisis Sentiment Aplikasi PLN Mobile Pada Google Play Store

Dimensions Badge
Article History
Submitted: 2025-03-29
Published: 2025-06-01
Abstract View: 149 times
PDF Download: 90 times
How to Cite
Sari, C., & Suryono, R. (2025). Perbandingan Algoritma Naïve Bayes, Random Forest, dan SVM Untuk Analisis Sentiment Aplikasi PLN Mobile Pada Google Play Store. Building of Informatics, Technology and Science (BITS), 7(1), 63-74. https://doi.org/10.47065/bits.v7i1.7164
Section
Articles

Most read articles by the same author(s)