Perbandingan Kinerja Algoritma Random Forest, KNN, dan SVM dalam Analisis Sentimen Cryptocurrency
Abstract
Cryptocurrency is a digital money based on blockchain technology that offers security and transparency in transactions, so it has increasingly attracted the attention of the public, including in Indonesia. With the number of investors surpassing 20 million, cryptocurrencies have generated a variety of opinions on social media. Some see it as a promising modern investment opportunity, while others highlight the risks of price fluctuations, security, and unclear regulations. To understand public sentiment towards cryptocurrencies, machine learning-based sentiment analysis is a relevant solution. This research compares the performance of three popular algorithms, namely Random Forest, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM), in sentiment analysis of public opinion. These three algorithms have different advantages and disadvantages, depending on the characteristics of the data and the purpose of the analysis. Random Forest is known to be stable but requires high computation, KNN is easy to apply but less reliable on high-dimensional data, and SVM excels at separating complex data but requires careful parameter tuning. Previous research has shown differences in the accuracy of these three algorithms on various datasets, so further evaluation is needed to determine the most effective algorithm. The results of this study are expected to provide guidance in choosing the right algorithm for sentiment analysis, especially on cryptocurrency-related opinion data, as well as expand the understanding of the application of algorithms on dynamic and complex data.
Downloads
References
Kementerian Keuangan RI, “Yuk, Berkenalan dengan Kripto!,” https://www.djkn.kemenkeu.go.id/kpknl-tangerang1/baca-artikel/16059/Yuk-Berkenalan-dengan-Kripto.html.
Adis Syahrul, Ade Irma Purnamasari, and Irfan Ali, “Analisis Sentimen Twitter Terhadap Cryptocurrency Menggunakan Algoritma Naive Bayes Dan Decision Tree,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 2, pp. 2213–2220, Apr. 2024, doi: https://doi.org/10.36040/jati.v8i2.8381.
T. Wira and E. Suryawijaya, “Memperkuat Keamanan Data melalui Teknologi Blockchain: Mengeksplorasi Implementasi Sukses dalam Transformasi Digital di Indonesia Strengthening Data Security through Blockchain Technology: Exploring Successful Implementations in Digital Transformation in Indonesia,” JSKP (Jurnal Studi Kebijakan Publik), vol. 2, no. 1, pp. 55–67, 2023, doi: 10.21787/jskp.2.2023.55-67.
Kementerian Perdagangan RI, “Transaksi Kripto Indonesia Sentuh Rp 211 Triliun hingga April 2024,” https://www.kemendag.go.id/berita/pojok-media/transaksi-kripto-indonesia-sentuh-rp-211-triliun-hingga-april-2024.
T. A. Pratama, “Eksplorasi Naratif Media: Analisis Framing CNN Indonesia Terhadap Pelanggan Aset Kripto,” JKOMDIS : Jurnal Ilmu Komunikasi Dan Media Sosial, vol. 4, no. 2, pp. 350–355, May 2024, doi: 10.47233/jkomdis.v4i2.1618.
Frida Nur Amalina Wijaya, “Bitcoin Sebagai Digital Aset Pada Transaksi Elektronik Di Indonesia (Studi Pada PT. Indodax Nasional Indonesia),” Jurnal Hukum Bisnis Bonum Commune, vol. 2, no. 2, pp. 126–136, Jul. 2019, doi: https://doi.org/10.30996/jhbbc.v2i2.2388.
I. T. Julianto, D. Kurniadi, M. R. Nashrulloh, A. Mulyani, and J. I. Komputer, “Comparison Of Data Mining Algorithm For Forecasting Bitcoin Crypto Currency Trends,” Jurnal Teknik Informatika (JUTIF), vol. 3, no. 2, pp. 245–248, 2022, doi: 10.20884/1.jutif.2022.3.2.194.
N. Huda and R. Hambali, “Risiko dan Tingkat Keuntungan Investasi Cryptocurrency,” Jurnal Manajemen dan Bisnis, vol. 17, no. 1, Mar. 2020, doi: 10.29313/performa.v17i1.7236.
M. Albirr, I. Yazidillah, and B. S. Barus, “Studi Tinjauan Pustaka Analisis Risiko Cryptocurrency Sebagai Alat Untuk Berinvestasi,” SOSTECH Jurnal Sosial dan Teknologi, vol. 3, no. 12, pp. 989–995, Dec. 2023, doi: https://doi.org/10.59188/jurnalsostech.v3i12.1016.
J. E. Savero, V. H. Pranatawijaya, and E. Christian, “Analisis Sentimen Pengguna Media Sosial X terhadap Perubahan Harga Bitcoin: Pendekatan Machine Learning,” KONSTELASI (Konvergensi Teknologi dan Sistem Informasi), vol. 4, no. 1, pp. 196–208, Jun. 2024, doi: https://doi.org/10.24002/konstelasi.v4i1.9043.
N. Merlina, A. Chandra, and N. A. Mayangky, “Penerapan Pso Untuk Sentimen Analisis Pada Review Mata Uang Kripto Menggunakan Metode Naïve Bayes,” INTI Nusa Mandiri, vol. 18, no. 2, pp. 115–121, Feb. 2024, doi: 10.33480/inti.v18i2.4982.
I. Hulu and H. Budiati, “Implementasi Text Mining Pada Pengukuran Sentimen Opini Masyarakat Terhadap Universitas Kristen Immanuel,” JURNAL SAINS DAN KOMPUTER, vol. 7, no. 02, pp. 1–7, Jul. 2023, doi: 10.61179/jurnalinfact.v7i02.445.
D. Prawita Sari, Z. Halim, and B. Waseso, “Implementasi Machine Learning untuk Deteksi Intrusi pada Jaringan Komputer,” Jurnal Minfo Polgan, vol. 13, no. 2, 2024, doi: 10.33395/jmp.v13i2.14074.
A. Sugesti, M. Abdul Mukid, and Tarno Tarno, “Perbandingan Kinerja Mutual K-Nearest Neighbor (Mknn) Dan K-Nearest Neighbor (Knn) Dalam Analisis Klasifikasi Kelayakan Kredit,” Jurnal Gaussian, vol. 8, no. 3, pp. 366–376, 2019, doi: https://doi.org/10.14710/j.gauss.8.3.366-376.
S. W. Iriananda, R. W. Budiawan, A. Y. Rahman, and I. Istiadi, “Optimasi Klasifikasi Sentimen Komentar Pengguna Game Bergerak Menggunakan Svm, Grid Search Dan Kombinasi N-Gram,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 4, pp. 743–752, Aug. 2024, doi: 10.25126/jtiik.1148244.
C. Rahmawati and P. Sukmasetya, “Sentimen Analisis Opini Masyarakat Terhadap Kebijakan Kominfo atas Pemblokiran Situs non-PSE pada Media Sosial Twitter,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 5, p. 1393, Oct. 2022, doi: 10.30865/jurikom.v9i5.4950.
M. Yasir, M. Grace Haque, R. Suraji, and C. Author, “Analisis Sentimen Terhadap Kontroversi Fatwa MUI Nomor 83 Tahun 2023 Tentang Pemboikotan Produk yang Terafiliasi Israel,” JURNAL EKONOMI MANAJEMEN SISTEM INFORMASI (JEMSI), vol. 5, Mar. 2024, doi: 10.31933/jemsi.v5i4.
S. A. Putra and Wijaya Andri, “Analisis Sentimen Artificial Intelligence (AI) Pada Media Sosial Twitter Menggunakan Metode Lexicon Based,” JuSiTik (Jurnal Sistem Informasi Komunikasi, vol. 7, no. 1, pp. 21–28, Dec. 2023, doi: https://doi.org/10.32524/jusitik.v7i1.1042.
F. Fiddin, M. Yusuf Syahbarna, and M. Ridwan, “Penggunaan Supervised Learning untuk Prediksi Validitas Ulasan Negatif Aplikasi Tokopedia Berdasarkan Pengalaman Pengguna Ahli,” Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), vol. 23, pp. 409–417, Aug. 2024, doi: https://doi.org/10.53513/jis.v23i2.10030.
Nurul Istiqamah and Muhammad Rijal, “Klasifikasi Ulasan Konsumen Menggunakan Random Forest dan SMOTE,” Journal of System and Computer Engineering (JSCE), vol. 5, Jan. 2024, doi: https://doi.org/10.61628/jsce.v5i1.1061.
M. Aufar, R. Andreswari, and D. Pramesti, “Sentiment Analysis on Youtube Social Media Using Decision Tree and Random Forest Algorithm: A Case Study,” in 2020 International Conference on Data Science and Its Applications (ICoDSA), 2020, pp. 1–7. doi: 10.1109/ICoDSA50139.2020.9213078.
S. Ulya, M. Arief Soeleman, F. Budiman, and M. Teknik Informatika, “Optimasi Parameter K Pada Algoritma K-NN Untuk Klasifikasi Prioritas Bantuan Pembangunan Desa Optimization of K Parameters in the K-NN Algorithm for Priority Classification of Village Development Assistance,” Feb. 2021. doi: https://doi.org/10.33633/tc.v20i1.4215.
R. Obiedat et al., “Sentiment Analysis of Customers’ Reviews Using a Hybrid Evolutionary SVM-Based Approach in an Imbalanced Data Distribution,” IEEE Access, vol. 10, pp. 22260–22273, 2022, doi: 10.1109/ACCESS.2022.3149482.
D. Rifaldi, Abdul Fadlil, and Herman, “Teknik Preprocessing Pada Text Mining Menggunakan Data Tweet ‘Mental Health,’” Decode: Jurnal Pendidikan Teknologi Informasi, vol. 3, no. 2, pp. 161–171, Apr. 2023, doi: 10.51454/decode.v3i2.131.
A. Muhammad Aditya, S. Alam, and M. Andayani Komara, “Analisis Sentimen Pengguna Twitter Terhadap Boikot Produk Israel Pada Merek Dagang Unilever Indonesia Menggunakan Algoritma Long Short Term Memory,” Jurnal Mahasiswa Teknik Informatika, vol. 8, no. 5, pp. 9883–9890, Oct. 2024, doi: https://doi.org/10.36040/jati.v8i5.10823.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Kinerja Algoritma Random Forest, KNN, dan SVM dalam Analisis Sentimen Cryptocurrency
Pages: 2288-2299
Copyright (c) 2025 Rinaldi Sukma AndaruJaya, Ryan Randy Suryono

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).