Klasifikasi Citra X-Ray Tuberkulosis Menggunakan Convolutional Neural Networks


  • Haykal Alya Mubarak * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Rice Novita Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Tuberculosis; Classification; Convolutional Neural Network; Adam Optimizer; Nadam Optimizer

Abstract

Tuberculosis (TB) is a serious infectious disease that is still one of the main causes of death in the world, especially in developing countries. X-ray image analysis is an important step in controlling this disease. This research aims to classify X-ray images of tuberculosis using a deep learning approach with three Convolutional Neural Networks (CNN) architectures: DenseNet201, Xception, and MobileNetV2. The dataset used consists of 3,000 X-ray images, divided into two categories: normal and TBC, obtained from Kaggle, which are then processed through normalization, augmentation, and data division using the hold-out method with a ratio of 70:30, 80:20 , and 90:10. The research results show that DenseNet201 with the Nadam optimizer at 90:10 data division produces the highest accuracy of 100%, making it the best combination for TBC X-ray image classification. Xception achieved the best accuracy of 96.66% with the Nadam optimizer at a data split of 80:20. MobileNetV2 shows an optimal accuracy of 98.69% using the Adam optimizer at a 90:10 data split. This research proves that DenseNet201 with the Nadam optimizer is very effective in handling medical image classification, especially for tuberculosis. These results provide an important contribution to the development of deep learning-based technology to improve the accuracy of tuberculosis diagnosis.

Downloads

Download data is not yet available.

References

H. Platini, S. Pebrianti, K. Kosim, and I. Maulana, “Efek Samping Pengobatan Pada Pasien Tuberkulosis,” Jurnal Keperawatan’Aisyiyah, vol. 10, no. 2, pp. 169–175, 2023, https://doi.org/10.33867/jka.v10i2.465.

A. M. García-Marín et al., “Role of the first WHO mutation catalogue in the diagnosis of antibiotic resistance in Mycobacterium tuberculosis in the Valencia Region, Spain: a retrospective genomic analysis,” The Lancet Microbe, vol. 5, no. 1, pp. e43–e51, 2024, https://doi.org/10.1016/S2666-5247(23)00252-5.

A. Bouslama, Y. Laaziz, and A. Tali, “Diagnosis and precise localization of cardiomegaly disease using U-NET,” Informatics in Medicine Unlocked, vol. 19, p. 100306, 2020, https://doi.org/10.1016/j.imu.2020.100306.

A. M. A. Saputra, L. P. I. Kharisma, A. A. Rizal, M. I. Burhan, and N. W. Purnawati, TEKNOLOGI INFORMASI: Peranan TI dalam berbagai bidang. PT. Sonpedia Publishing Indonesia, 2023. Accessed: Nov. 13, 2024, ISBN: 978-623-8345-45-8. [Online]. Available: https://books.google.com/books?hl=id&lr=&id=GgHSEAAAQBAJ&oi=fnd&pg=PA39&dq=Saputra,+A.+M.+A.,+Kharisma,+L.+P.+I.,+Rizal,+A.+A.,+Burhan,+M.+I.,+%26+Purnawati,+N.+W.+(2023).+TEKNOLOGI+INFORMASI:+Peranan+TI+dalam+berbagai+bidang.+PT.+Sonpedia+Publishing+Indonesia.+ISBN+6238345454,+9786238345458&ots=hNXMWp4_7V&sig=junEAwHoDjo-LmVIOcJj_j7tj0E

X. W. Gao and Y. Qian, “Prediction of Multidrug-Resistant TB from CT Pulmonary Images Based on Deep Learning Techniques,” Mol. Pharmaceutics, vol. 15, no. 10, pp. 4326–4335, Oct. 2018, doi: 10.1021/acs.molpharmaceut.7b00875.

M. Nijiati et al., “Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes,” European Journal of Radiology, vol. 169, p. 111180, Dec. 2023, doi: 10.1016/j.ejrad.2023.111180.

J. Chen and C. Park, “A deep learning paradigm for medical imaging data,” Expert Systems with Applications, p. 124480, 2024, https://doi.org/10.1016/j.eswa.2024.124480.

L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, “Review of image classification algorithms based on convolutional neural networks,” Remote Sensing, vol. 13, no. 22, p. 4712, 2021, https://doi.org/10.3390/rs13224712.

D. R. Sarvamangala and R. V. Kulkarni, “Convolutional neural networks in medical image understanding: a survey,” Evol. Intel., vol. 15, no. 1, pp. 1–22, Mar. 2022, doi: 10.1007/s12065-020-00540-3.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708. Accessed: Nov. 13, 2024. [Online]. Available: http://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.html, doi: 10.1109/CVPR.2017.243.

J. O. Carnagie, A. R. Prabowo, E. P. Budiana, and I. K. Singgih, “Essential oil plants image classification using xception model,” Procedia Computer Science, vol. 204, pp. 395–402, 2022, https://doi.org/10.1016/j.procs.2022.08.048.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 4510–4520. Accessed: Nov. 13, 2024. [Online]. Available: http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html, https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00474.

T. Rahman et al., “Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization,” Ieee Access, vol. 8, pp. 191586–191601, 2020, doi: 10.1109/ACCESS.2020.3031384.

V. Sharma, S. K. Gupta, and K. K. Shukla, “Deep learning models for tuberculosis detection and infected region visualization in chest X-ray images,” Intelligent Medicine, vol. 4, no. 2, pp. 104–113, 2024, https://doi.org/10.1016/j.imed.2023.06.001.

M. K. Mahbub, M. Biswas, L. Gaur, F. Alenezi, and K. C. Santosh, “Deep features to detect pulmonary abnormalities in chest X-rays due to infectious diseaseX: Covid-19, pneumonia, and tuberculosis,” Information Sciences, vol. 592, pp. 389–401, 2022, https://doi.org/10.1016/j.ins.2022.01.062.

E. Mahamud, N. Fahad, M. Assaduzzaman, S. M. Zain, K. O. M. Goh, and Md. K. Morol, “An explainable artificial intelligence model for multiple lung diseases classification from chest X-ray images using fine-tuned transfer learning,” Decision Analytics Journal, vol. 12, p. 100499, Sep. 2024, doi: 10.1016/j.dajour.2024.100499.

J. Lin et al., “Few-shot learning for the classification of intestinal tuberculosis and Crohn’s disease on endoscopic images: A novel learn-to-learn framework,” Heliyon, vol. 10, no. 4, p. e26559, Feb. 2024, doi: 10.1016/j.heliyon.2024.e26559.

R. Indraswari, R. Rokhana, and W. Herulambang, “Melanoma image classification based on MobileNetV2 network,” Procedia Computer Science, vol. 197, pp. 198–207, Jan. 2022, doi: 10.1016/j.procs.2021.12.132, https://doi.org/10.1016/j.procs.2021.12.132.

J. Zhou et al., “Intelligent classification of maize straw types from UAV remote sensing images using DenseNet201 deep transfer learning algorithm,” Ecological Indicators, vol. 166, p. 112331, 2024, https://doi.org/10.1016/j.ecolind.2024.112331.

F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251–1258. Accessed: Nov. 18, 2024. [Online]. Available: http://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html, https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.195

Y. Zhu, H. JiaYI, Y. Li, and W. Li, “Image identification of cashmere and wool fibers based on the improved Xception network,” Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 10, pp. 9301–9310, 2022, https://doi.org/10.1016/j.jksuci.2022.09.009.

K. S. Anjali, R. P. Singh, M. K. Panda, and K. Palaniappan, “An Ensemble Approach using Self-attention based MobileNetV2 for SAR classification,” Procedia Computer Science, vol. 235, pp. 3207–3216, 2024, https://doi.org/10.1016/j.procs.2024.04.303.

J. P. Gujjar, H. P. Kumar, and N. N. Chiplunkar, “Image classification and prediction using transfer learning in colab notebook,” Global Transitions Proceedings, vol. 2, no. 2, pp. 382–385, 2021, https://doi.org/10.1016/j.gltp.2021.08.068.

J. Kang, X. Zhu, L. Shen, and M. Li, “Fault diagnosis of a wave energy converter gearbox based on an Adam optimized CNN-LSTM algorithm,” Renewable Energy, vol. 231, p. 121022, 2024, https://doi.org/10.1016/j.renene.2024.121022.

A. K. Shahade, K. H. Walse, V. M. Thakare, and M. Atique, “Multi-lingual opinion mining for social media discourses: An approach using deep learning based hybrid fine-tuned smith algorithm with adam optimizer,” International Journal of Information Management Data Insights, vol. 3, no. 2, p. 100182, 2023, https://doi.org/10.1016/j.jjimei.2023.100182.

S. Riyadi, E. N. Pramudya, C. Damarjati, J. M. Molina Lopez, and J. G. Herrero, “Explainable optimization of deep learning model for COVID-19 detection using chest images,” Informatics in Medicine Unlocked, vol. 49, p. 101559, Jan. 2024, doi: 10.1016/j.imu.2024.101559.

M. A. K. Raiaan et al., “A systematic review of hyperparameter optimization techniques in Convolutional Neural Networks,” Decision Analytics Journal, p. 100470, 2024, https://doi.org/10.1016/j.dajour.2024.100470

L. Zhong, G. Xin, Q. Peng, J. Cui, L. Zhu, and H. Liang, “Deep learning-based recognition of stained tongue coating images,” Digital Chinese Medicine, vol. 7, no. 2, pp. 129–136, Jun. 2024, doi: 10.1016/j.dcmed.2024.09.004.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Citra X-Ray Tuberkulosis Menggunakan Convolutional Neural Networks

Dimensions Badge
Article History
Submitted: 2024-12-25
Published: 2025-03-01
Abstract View: 18 times
PDF Download: 16 times
How to Cite
Mubarak, H., & Novita, R. (2025). Klasifikasi Citra X-Ray Tuberkulosis Menggunakan Convolutional Neural Networks. Building of Informatics, Technology and Science (BITS), 6(4), 2204-2216. https://doi.org/10.47065/bits.v6i4.6515
Issue
Section
Articles

Most read articles by the same author(s)