Klasifikasi Batu Permata Berbasis Citra Menggunakan Convolutional Neural Network
Abstract
Manual gemstone identification still faces several limitations, such as subjective assessment and strong dependence on expert experience, which may lead to misclassification, particularly for gemstones with similar visual characteristics. This study aims to apply a Convolutional Neural Network (CNN) for automatic visual-based gemstone image classification using a limited dataset. The dataset consists of three gemstone classes, namely Alexandrite, Almandine, and Amazonite, with a balanced class distribution. Image preprocessing includes image resizing, pixel value normalization, and data augmentation to increase data variability. The proposed CNN model is a custom architecture composed of three convolutional layers with ReLU activation, followed by max pooling, a fully connected layer with dropout, and a Softmax output layer. Model performance is evaluated using a confusion matrix and classification metrics, including accuracy, precision, recall, and F1-score. Experimental results show that the CNN model achieves a testing accuracy of 93.33% on the limited test dataset with relatively balanced performance across classes. However, analysis of the training and validation curves indicates the presence of overfitting, suggesting that the model’s generalization capability to unseen data remains limited. These findings highlight that the achieved accuracy is conditional on the specific and constrained dataset used. Therefore, future work is recommended to expand dataset size and diversity, apply more comprehensive data augmentation strategies, and explore transfer learning approaches to improve model stability and generalization performance.
Downloads
References
A. Demény et al., “Provenance groups in a Roman jet jewelry collection at Aquincum (Budapest, Hungary) and comparison with jet and jet-like gemstones,” J Archaeol Sci Rep, vol. 54, pp. 1–9, Apr. 2024, doi: 10.1016/j.jasrep.2024.104413.
M. K. E. Putri, “Identifikasi Citra Batu Mulia dengan Menggunakan Metode Jaringan Saraf Tiruan Backpropagation,” Eksplora Informatika, vol. 9, no. 1, pp. 11–16, Sep. 2019, doi: 10.30864/eksplora.v9i1.256.
A. Tatar, M. Haghighi, and A. Zeinijahromi, “Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 17, no. 1, pp. 106–125, Jan. 2025, doi: 10.1016/j.jrmge.2024.02.015.
S. Shrivastav, V. Jindal, and R. Eswarawaka, “A Fusion Method for Detection and Classification of Diseases in Tomato Plants Using Swarm-based Deep Learning,” International Journal of Experimental Research and Review, vol. 45, pp. 135–152, 2024, doi: 10.52756/ijerr.2024.v45spl.011.
Y. Li et al., “Utilizing artificial intelligence to determine bone mineral density using spectral CT,” Bone, vol. 192, pp. 1–8, Mar. 2025, doi: 10.1016/j.bone.2024.117321.
J. Wang, Y. He, L. Yan, S. Chen, and K. Zhang, “Predicting Osteoporosis and Osteopenia by Fusing Deep Transfer Learning Features and Classical Radiomics Features Based on Single-Source Dual-energy CT Imaging,” Acad Radiol, vol. 31, no. 10, pp. 4159–4170, Oct. 2024, doi: 10.1016/j.acra.2024.04.022.
R. Fahreza Taufiqurrahman, F. T. Anggraeny, and A. N. Sihananto, “Penerapan Arsitektur CNN-Dilated untuk Deteksi Manipulasi Citra Deepfake,” ILKOMNIKA: Journal of Computer Science and Applied Informatics E, vol. 7, no. 3, pp. 495–506, 2025, doi: 10.28926/ilkomnika.v7i3.821.
M. Rafi, A. Firdaus, R. Mardhiyyah, and F. I. Sanjaya, “Klasifikasi Citra Biji Kopi Sangrai Arabika dan Robusta Menggunakan Convolutional Neural Network,” TIN: Terapan Informatika Nusantara, vol. 6, no. 7, pp. 969–980, 2025, doi: 10.47065/tin.v6i7.8695.
R. Robianto, S. H. Sitorus, and U. Ristian, “Penerapan Metode Decision Tree Untuk Mengklasifikasikan Mutu Buah Jeruk Berdasarkan Fitur Warna Dan Ukuran,” Coding Jurnal Komputer dan Aplikasi, vol. 9, no. 01, p. 76, 2021, doi: 10.26418/coding.v9i01.45907.
L. S. Dias, J. Schmith, J. D. de Oliveira, E. M. Cardoso, and J. B. Copetti, “Convolutional neural network for flow boiling patterns classification,” AI Thermal Fluids, vol. 4, p. 100015, Dec. 2025, doi: 10.1016/j.aitf.2025.100015.
F. Mahrus Fathoni, “Klasifikasi Penyakit Daun Tomat Menggunakan Algoritma K-NN Berdasarkan Ekstraksi Fitur GLCM dan LBP,” Jurnal Teknik Informatika dan Teknologi Informasi, vol. 4, no. 1, pp. 39–50, Jan. 2024, doi: 10.55606/jutiti.v4i1.3417.
B. H. Y. Chow and C. C. Reyes-Aldasoro, “Automatic gemstone classification using computer vision,” Minerals, vol. 12, no. 1, pp. 1–10, Jan. 2022, doi: 10.3390/min12010060.
Z. Yutian, L. Gaojie, and H. Yongling, “Jadeite material identification and automatic a/b classification model based on deep learning and hyperspectral imaging,” Perinatal Journal, vol. 33, no. 1, pp. 1–10, 2025, doi: 10.57239/prn.25.033100112.
M. F. Hardman, A. Homkrajae, S. Eaton-Magaña, C. M. Breeding, A. C. Palke, and Z. Sun, “CLASSIFICATION OF GEM MATERIALS USING MACHINE LEARNING,” Gems and Gemology, vol. 60, no. 3, pp. 306–329, Sep. 2024, doi: 10.5741/GEMS.60.3.306.
J. Ver Berne, S. B. Saadi, N. Oliveira-Santos, L. E. Marinho-Vieira, and R. Jacobs, “Automated classification of panoramic radiographs with inflammatory periapical lesions using a CNN-LSTM architecture,” J Dent, vol. 156, pp. 1–9, May 2025, doi: 10.1016/j.jdent.2025.105688.
A. G. Akintola et al., “Integrated deep learning paradigm for comprehensive lung cancer segmentation and classification using mask R-CNN and CNN models,” Franklin Open, vol. 11, pp. 1–9, Jun. 2025, doi: 10.1016/j.fraope.2025.100278.
P. I. Ritharson, K. Raimond, X. A. Mary, J. E. Robert, and A. J, “DeepRice: A deep learning and deep feature based classification of Rice leaf disease subtypes,” Artificial Intelligence in Agriculture, vol. 11, pp. 34–49, Mar. 2024, doi: 10.1016/j.aiia.2023.11.001.
A. Ostreika, M. Pivoras, A. Misevičius, T. Skersys, and L. Paulauskas, “Classification of objects by shape applied to amber gemstone classification,” Applied Sciences (Switzerland), vol. 11, no. 3, pp. 1–14, Feb. 2021, doi: 10.3390/app11031024.
Y. Xu and R. Goodacre, “On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning,” J Anal Test, vol. 2, no. 3, pp. 249–262, Jul. 2018, doi: 10.1007/s41664-018-0068-2.
F. Arif Prayogi, F. Hasim Arvianto, D. Rizki Pratama, and S. Sugiyanto, “Mushroom Classification Using Convolutional Neural Network MobileNetV2 Architecture for Overfitting Mitigation and Enhanced Model Generalization,” Aug. 2025. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
K. Shahzad et al., “Federated Convolutional Neural Networks (F-CNNs) for privacy-preserving multi-class skin lesion classification,” Array, p. 100667, Dec. 2025, doi: 10.1016/j.array.2025.100667.
O. Hariansyah, Y. Cahyono, and P. Rosyani, “Klasifikasi Penyakit Daun Pada Tanaman Terong dengan Metode K-Nearest Neighbors,” Technology and Science (BITS), vol. 6, no. 4, pp. 2766–2775, 2025, doi: 10.47065/bits.v6i4.7016.
N. * Risky, D. Setiyawan, D. Hermawan, and O. Herdiyanto, “Prediksi Kelulusan Mahasiswa Menggunakan Algoritma Decision Tree C4.5 Berbasis Data Akademik dengan Validasi 10-Fold,” TIN: Terapan Informatika Nusantara, vol. 6, no. 6, pp. 670–678, Nov. 2025, doi: 10.47065/tin.v6i6.8662.
P. Rosyani, “Deteksi Citra Bunga Menggunakan Analisis Segmentasi Fuzzy C-Means dan Otsu Threshold,” Matrik : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, vol. 20, no. 1, pp. 27–34, Nov. 2020, doi: 10.30812/matrik.v20i1.715.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Batu Permata Berbasis Citra Menggunakan Convolutional Neural Network
Pages: 290-297
Copyright (c) 2026 Perani Rosyani, Oke Hariansyah, Yuda Permadi, Muhamad Rosdiana, Nanang Nanang

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















