Optimalisasi Prediksi Kelulusan Mahasiswa Menggunakan Algoritma Decision Tree CART
Abstract
Timely student graduation is a key indicator of higher education quality and institutional effectiveness. This study aims to optimize student graduation prediction using a Decision Tree algorithm based on Classification and Regression Tree (CART) by integrating academic and non-academic variables. The dataset used in this study is the open-source Student Graduation Dataset obtained from Kaggle, consisting of 379 student records with graduation status as the target variable. The research stages include data preprocessing through mean imputation for missing values, categorical variable transformation, data splitting with an 80:20 ratio, and model optimization using CART hyperparameter tuning as a form of post-pruning. Model performance was evaluated using accuracy, precision, recall, F1-score, and a confusion matrix. The experimental results show that the optimized CART model achieved an accuracy of 92.1%, with F1-scores above 0.90 for both graduation classes and a balanced trade-off between precision and recall. Furthermore, the resulting decision tree structure is relatively simple and highly interpretable. These findings indicate that the optimized CART algorithm is effective and suitable for implementation as an early warning system to support academic decision-making in higher education institutions.
Downloads
References
N. * Risky, D. Setiyawan, D. Hermawan, and O. Herdiyanto, “Prediksi Kelulusan Mahasiswa Menggunakan Algoritma Decision Tree C4.5 Berbasis Data Akademik dengan Validasi 10-Fold,” TIN: Terapan Informatika Nusantara, vol. 6, no. 6, pp. 670–678, Nov. 2025, doi: 10.47065/tin.v6i6.8662.
J. Wang, Y. He, L. Yan, S. Chen, and K. Zhang, “Predicting Osteoporosis and Osteopenia by Fusing Deep Transfer Learning Features and Classical Radiomics Features Based on Single-Source Dual-energy CT Imaging,” Acad Radiol, vol. 31, no. 10, pp. 4159–4170, Oct. 2024, doi: 10.1016/j.acra.2024.04.022.
G. A. Rahman, K. A. Notodiputro, B. Sartono, and L. Surimi, “CART and Random Forest Analysis on Graduation Status of Halu Oleo University Students,” Inferensi, vol. 8, no. 3, p. 271, Nov. 2025, doi: 10.12962/j27213862.v8i3.23336.
F. Ariska, V. Sihombing, and I. Irmayani, “Student Graduation Predictions Using Comparison of C5.0 Algorithm With Linear Regression,” SinkrOn, vol. 7, no. 1, pp. 256–266, Feb. 2022, doi: 10.33395/sinkron.v7i1.11261.
T. H. Hasibuan and D. Mahdiana, “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Algoritma C4.5 Pada Uin Syarif Hidayatullah Jakarta,” SKANIKA: Sistem Komputer dan Teknik Informatika, vol. 6, pp. 61–74, 2023, Accessed: Jan. 13, 2026. [Online]. Available: https://jom.fti.budiluhur.ac.id/SKANIKA/article/view/2976
D. Kurniawan, A. Anggrawan, and H. Hairani, “Graduation Prediction System On Students Using C4.5 Algorithm,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 19, no. 2, pp. 358–365, May 2020, doi: 10.30812/matrik.v19i2.685.
A. S. R. Siregar, Y. S. Siregar, and M. Khairani, “Implementation Of The Data Mining Cart Algorithm In The Characteristic Pattern Of New Student Admissions,” Journal of Computer Networks, Architecture and High Performance Computing, vol. 5, no. 1, pp. 263–275, Feb. 2023, doi: 10.47709/cnahpc.v5i1.1975.
S. Sarbaini and F. Ulfa, “STUDENT GRADUATION PREDICTION USING DECISION TREE METHOD WITH C4.5 ALGORITHM,” Jurnal Diferensial, vol. 6, no. 1, pp. 9–15, Jan. 2024, doi: 10.35508/jd.v6i1.12287.
D. A. Wagner, T. Nair, A. Thapa, and A. Kumar, “The Gini Learning Index: A new framework to measure learning inequality across contexts,” Int J Educ Dev, vol. 119, pp. 1–12, Nov. 2025, doi: 10.1016/j.ijedudev.2025.103433.
M. Abdul Azis and P. Studi Ilmu Komputer STMIK Nusa Mandiri, “Analisis Prediksi Kelulusan Mahasiswa Menggunakan Decission Tree Berbasis Particle Swarm Optimization,” Sisfokom : Sistem Informasi dan Komputer, vol. 09, pp. 102–107, doi: 10.32736/sisfokom.v9.i1.
A. Tashk, K. M. Sørensen, S. B. Engelsen, K. S. Pedersen, and C. E. Eskildsen, “MIPLS2: Exploiting PLS2 to impute missing values in a two-block system with multiple response variables,” Anal Chim Acta, vol. 1364, pp. 1–10, Aug. 2025, doi: 10.1016/j.aca.2025.344134.
B. Baydil, V. H. de la Peña, H. Zou, and H. Yao, “Unbiased estimation of the Gini coefficient,” Stat Probab Lett, vol. 222, pp. 1–9, Jul. 2025, doi: 10.1016/j.spl.2025.110376.
I. Irumas and J. N. Utamajaya, “Penerapan Metode EUCS Untuk Evaluasi Tingkat Kepuasan Pengguna Aplikasi PNM Digi Karyawan,” Journal of Computer System and Informatics (JoSYC), vol. 4, no. 1, pp. 101–108, Dec. 2022, doi: 10.47065/josyc.v4i1.2492.
S. Kim, T. H. Lee, and J. Lee, “TMF-GNN: Temporal matrix factorization-based graph neural network for multivariate time series forecasting with missing values,” Expert Syst Appl, vol. 275, pp. 1–11, May 2025, doi: 10.1016/j.eswa.2025.127001.
Y. B. L. Kintomonho, M. N. Atchadé, and D. Daddah, “Decision tree-based statistical learning and quantile regression adjustment: Insights from pregnant women in Benin,” Sci Afr, vol. 29, pp. 1–10, Sep. 2025, doi: 10.1016/j.sciaf.2025.e02832.
A. J. F. Martin and T. M. Conway, “Using the Gini Index to quantify urban green inequality: A systematic review and recommended reporting standards,” Feb. 01, 2025, Elsevier B.V. doi: 10.1016/j.landurbplan.2024.105231.
J. M. Gavilan-Ruiz, Á. Ruiz-Gándara, F. J. Ortega-Irizo, and L. Gonzalez-Abril, “Some Notes on the Gini Index and New Inequality Measures: The nth Gini Index,” Stats (Basel), vol. 7, no. 4, pp. 1354–1365, Dec. 2024, doi: 10.3390/stats7040078.
M. Mesran and D. P. Indini, “Analisis Dalam Pendukung Keputusan Seleksi Content Creator Mahasiswa Terbaik Menerapkan Metode EDAS dan ROC,” Journal of Computer System and Informatics (JoSYC), vol. 4, no. 4, pp. 912–921, 2023, doi: 10.47065/josyc.v4i4.4093.
T. H. Wu, P. Y. Chen, C. C. Chen, M. J. Chung, Z. K. Ye, and M. H. Li, “Classification and Regression Tree (CART)-based estimation of soil water content based on meteorological inputs and explorations of hydrodynamics behind,” Agric Water Manag, vol. 299, pp. 1–17, Jun. 2024, doi: 10.1016/j.agwat.2024.108869.
N. J. Downing, “Missing value imputation in environmental, social, and governance data: an impact on emissions scores,” Financ Res Lett, vol. 85, pp. 1–10, Nov. 2025, doi: 10.1016/j.frl.2025.107818.
W. Li, G. Subašić, I. Korolija, R. Guida, and S. M. Hong, “Data imputation methods for missing U-values of building envelopes in building performance database,” Journal of Building Engineering, vol. 118, pp. 1–6, Jan. 2026, doi: 10.1016/j.jobe.2025.115046.
A. Kumar, S. Bhushan, R. Pokhrel, A. I. Al-Omari, A. R. A. Alanzi, and S. S. Alshqaq, “Imputation of missing data for domain mean estimation using simple random sampling,” Kuwait Journal of Science, vol. 52, no. 4, pp. 1–10, Oct. 2025, doi: 10.1016/j.kjs.2025.100461.
H. Tian et al., “Classification and regression tree (CART) for predicting cadmium (Cd) uptake by rice (Oryza sativa L.) and its application to derive soil Cd threshold based on field data,” Ecotoxicol Environ Saf, vol. 285, pp. 1–8, Oct. 2024, doi: 10.1016/j.ecoenv.2024.117125.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Optimalisasi Prediksi Kelulusan Mahasiswa Menggunakan Algoritma Decision Tree CART
Pages: 298-305
Copyright (c) 2026 Afiani Agus Abdillah, Yono Cahyono, Teti Desyani, Perani Rosyani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















