Klasifikasi Penyakit Daun Pada Tanaman Terong dengan Metode K-Nearest Neighbors
Abstract
Eggplant (Solanum melongena) is an important agricultural commodity with high economic value. However, various leaf diseases can hinder its growth and reduce crop yields. Therefore, rapid and accurate identification and classification of leaf diseases are crucial for improving agricultural productivity. This study proposes the use of the K-Nearest Neighbors (KNN) method for classifying eggplant leaf diseases based on image analysis. The model is developed using color histogram features extracted from leaf images as the basis for classification. This research involves collecting a dataset of eggplant leaf images with various disease categories, extracting color features using RGB and HSV color models, and implementing a KNN model with k=3k=3k=3. The model's performance is evaluated using accuracy, precision, recall, and F1-score metrics. Experimental results show that the KNN model achieves an accuracy of approximately 87%, but challenges remain, such as dataset imbalance and misclassification of disease classes with similar color patterns. To improve accuracy, this study explores data augmentation techniques and optimizes the KNN model parameters. This research aims to enhance the effectiveness of KNN in detecting and classifying eggplant leaf diseases, ultimately assisting farmers in managing their crops more efficiently and effectively.
Downloads
References
A. Sanusi Mashuri and A. Sunyoto, “Klasifikasi Penyakit Pada Daun Cabai Menggunakan Arsitektur VGG16,” Journal homepage: Journal of Electrical Engineering and Computer (JEECOM), vol. 6, no. 2, 2024, doi: 10.33650/jeecom.v4i2.
Q. N. Azizah and ) Andreyestha, “Klasifikasi Penyakit Daun Apel Menggunakan Convolutional Neural Network,” Jurnal Ilmu Komputer dan Informatika, vol. 3, no. 1, 2022
Q. N. Azizah, “Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network AlexNet,” sudo Jurnal Teknik Informatika, vol. 2, no. 1, pp. 28–33, Feb. 2023, doi: 10.56211/sudo.v2i1.227.
S. Zahra, S. O. Ayu, and D. Kiswanto, “Klasifikasi Penyakit Pada Daun Jambu Berbasis Pengolahan Citra Dengan Analisis Tekstur Menggunakan Algoritma K-Nearest Neighbors (KNN),” Jurnal Komputer Multidispliner, Vol 7, No 12, 2024.
E. Safitri et al., “Klasifikasi Penyakit Daun Anggur Berbasis Citra Menggunakan Metode K-Nearest Neighbors (KNN),” Jurnal Jati, 2024.
H. Mubarok, S. Murni, and M. M. Santoni, “Penerapan Algoritma K-Nearest Neighbor untuk Klasifikasi Tingkat Kematangan Buah Tomat Berdasarkan Fitur Warna” Prosiding Senamika, 2021.
R. Amalia, I. H. Ikasari, and P. Rosyani, “Deteksi Objek dengan Model Warna Ycbcr dan Similiarity Distance Object Detection with YCbCr Color model and similiarity distance,” vol. 09, no. 2, pp. 98–100, 2021, doi: 10.26418/justin.v9i2.44230.
F. Mahrus Fathoni, C. Aji Putra, A. Lina Nurlaili, “Klasifikasi Penyakit Daun Anggur Menggunakan Metode K-Nearest Neighbor Berdasarkan Gray Level Co-Occurrence Matrix,” vol. 3, no. 1, 2024, [Online]. Available: https://ojs.unsiq.ac.id/index.php/biner
Teti Desyani, M. Mahromi, F. A. Ramadhan, M. Alfiansyah, M. I. Maulana, and P. Rosyani, “Classification of Plant Leaf Diseases Using Convolutional Neural Networks,” International Journal of Integrative Sciences, vol. 4, no. 1, pp. 195–206, Feb. 2025, doi: 10.55927/ijis.v4i1.13478.
I. H. Ikasari, R. Amalia, and P. Rosyani, “Segmentasi Citra Bunga Menggunakan Blob Analisis,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 3, pp. 228–234, 2021, doi: 10.47065/bits.v3i3.1050.
R. Amalia, A. F. Zaidan, S. Ramadhan, F. Septian, A. M. Aqsha, and P. Rosyani, “Classification of Autoimmune Diseases Using the K-Nearest Neighbors Algorithm,” Formosa Journal of Science and Technology, vol. 4, no. 1, pp. 337–348, Jan. 2025, doi: 10.55927/fjst.v4i1.13443.
A. Venkataramana, K. Suresh Kumar, N. Suganthi, and R. Rajeswari, “Prediction of Brinjal Plant Disease Using Support Vector Machine and Convolutional Neural Network Algorithm Based on Deep Learning,” Journal of Mobile Multimedia, vol. 18, no. 3, pp. 771–788, 2022, doi: 10.13052/jmm1550-4646.18315.
R. Indah Juwita Harahap, S. Khairani, “Implementasi Metode K-Nearest Neighbor Untuk Klasifikasi Penyakit Tanaman Mentimun Pada Citra Daun Implementation Of The K-Nearest Neighbor Method For Classification Of Cucumber Diseases On Leaf Images,” Jurnal Ilmu Komputer dan Sistem Informasi, Vol 3, No 2, 2024, doi.org/10.70340/jirsi.v3i2.123
H. Salsabila, E. Rachmawati, and F. Sthevanie, “Klasifikasi Gender Berdasarkan Citra Wajah Menggunakan Metode Local Binary Pattern dan K-Nearest Neighbor,”e-Proceeding of Engineering, vol. 8, no. 2, pp. 3137–3146, 2021.
P. Rosyani, A. M. Lutfi, E. Purwadi, Kamaluddin, Y. A. Hanaan, and I. H. Ikasari, “Application of Random Forest for Rice Plant Disease Classification,” International Journal of Integrative Sciences, vol. 4, no. 1, pp. 141–150, Feb. 2025, doi: 10.55927/ijis.v4i1.13477.
S. Apandi et al., “Classification of Lung Diseases Using the Desicison Tree Method,” Formosa Journal of Science and Technology, vol. 4, no. 1, pp. 393–412, Jan. 2025, doi: 10.55927/fjst.v4i1.13442.
Ines Heidiani Ikasari, R. Y. Saputra, S. Prasdio, M. F. Kurniagis, P. Rosyani, and Z. Janariandana, “Classification of Pneumonia Medical Images with Convolutional Neural Networks,” International Journal of Integrative Sciences, vol. 4, no. 1, pp. 127–134, Feb. 2025, doi: 10.55927/ijis.v4i1.13511.
K. Sulastri, “Klasifikasi Naïve Bayes pada Analisis Sentimen atas Penolakan Dibukanya Larangan Ekspor Benih Lobster,” KERNEL: Jurnal Riset Inovasi Bidang Informatika dan Pendidikan Informatika, vol. 1, no. 2, pp. 68–75, 2020, doi: 10.31284/j.kernel.2020.v1i2.1501.
A. C. Milano, “Klasifikasi Penyakit Daun Padi Menggunakan Model Deep Learning Efficientnet-B6,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 1, Jan. 2024, doi: 10.23960/jitet.v12i1.3855.
N. Istiqomah and M. Murinto, “Klasifikasi Penyakit Tanaman Padi Berbasis Citra Daun Menggunakan Convolutional Neural Network (CNN),” JSTIE (Jurnal Sarjana Teknik Informatika) (E-Journal), vol. 12, no. 1, p. 18, Feb. 2024, doi: 10.12928/jstie.v12i1.27314.
E. Anggiratih, S. Siswanti, S. K. Octaviani, and A. Sari, “Klasifikasi Penyakit Tanaman Padi Menggunakan Model Deep Learning Efficientnet B3 dengan Transfer Learning,” Jurnal Ilmiah SINUS, vol. 19, no. 1, p. 75, Jan. 2021, doi: 10.30646/sinus.v19i1.526.
S. Dwi, Y. Kusuma, H. Al Islami, and D. P. Rosyani, “Penerapan Naive Bayes Untuk Klasifikasi Penyakit Endokrin Pada Pasien Lansia,” KERNEL: Jurnal Riset Inovasi Bidang Informatika dan Pendidikan Informatika, vol. 5, no. 2, 2024, doi: 10.31284/j.kernel.2024.
Santi Rahayu, P. Rosyani, R. Y. Saputra, R. A. Umar, S. Prasdio, and W. A. Syach, “Application of Expert System in Rice Seedling Selection Based on Smart Data With Methods: Knowledge-Based System and Decision Tree,” International Journal of Integrative Sciences, vol. 4, no. 1, pp. 217–224, Feb. 2025, doi: 10.55927/ijis.v4i1.13510.
Fuad Mahrus Fathoni, “Klasifikasi Penyakit Daun Tomat Menggunakan Algoritma K-NN Berdasarkan Ekstraksi Fitur GLCM dan LBP,” Jurnal Teknik Informatika dan Teknologi Informasi, vol. 4, no. 1, pp. 39–50, Jan. 2024, doi: 10.55606/jutiti.v4i1.3417.
A. Putra Pranjaya, F. Rizki, R. Kurniawan, and N. K. Daulay, “Klasifikasi Penyakit Pada Daun Tanaman Padi Berbasis YoloV5 (You Only Look Once),” KLIK: Kajian Ilmiah Informatika dan Komputer , vol. 4, no. 6, pp. 3127–3136, 2024, doi: 10.30865/klik.v4i6.1916.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Penyakit Daun Pada Tanaman Terong dengan Metode K-Nearest Neighbors
Pages: 2766-2775
Copyright (c) 2025 Oke Hariansyah, Saprudin Saprudin, Yono Cahyono, Perani Rosyani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).