Perbandingan Metode Decision Tree Dan K-Nearest Neighbor Terhadap Ulasan Pengguna Aplikasi Mypertamina Menggunakan Confusion Matrix
Abstract
The large number of vehicles in Indonesia makes fuel oil (BBM) very important, especially for cars and motorbikes. The Indonesian government works closely with PT Pertamina Persero and requires transactions using the MyPertamina application to ensure that fuel subsidies are properly targeted. However, the MyPertamina app has received mixed feedback and criticism from users, such as complaints about frequent bugs, instability of the app during use and difficulties in the registration or login process. User feedback on the app has been both positive and negative. Users also provided their ratings and reviews on the Google Play Store. The purpose of this research is to analyse the opinions of MyPertamina application user comments and compare the accuracy of the Decision Tree and K-Nearest Neighbor algorithms. This research includes scraping, text preprocessing, weighting, algorithm implementation and evaluation. The data used was obtained from Google Play Store as much as 10,000 data based on the latest reviews, after data cleaning such as removing duplicate data and missing values obtained 8,072 reviews. The data is then grouped into positive classes (2,506 reviews) and negative classes (5,566 reviews), with more negative data. The classification results using the Decision Tree and K-NN methods, it is known that the Decision Tree method has a higher accuracy of 83%, while K-NN method is 58%. This finding indicates that the Decision Tree method is more effective in analysing user reviews of the MyPertamina application compared to the K-NN method.
Downloads
References
Syamsir Syamsir, Ahmad Lutfi, Aulia Annisa Fitriani, Ira Ramadani, Nabilah Azahra Putri, and Yurike Shizuka Nelsi, “Efekvitas Penggunaan Aplikasi My Pertamina Di Era Kenaikan Bbm Bersubsidi,” Pros. Semin. Nas. Pendidikan, Bahasa, Sastra, Seni, Dan Budaya, vol. 1, no. 2, pp. 244–253, 2022, doi: 10.55606/mateandrau.v1i2.189.
R. Islamia, I. R. Faizy Al, A. Aqilla, R. F. Ahmad, A. Z. Arum Pundak, and G. Pratama, “Dampak Kenaikan Harga Bahan Bakar Minyak (Bbm) Terhadap Sembilan Bahan Pokok (Sembako) Di Toko Sani Kabupaten Cirebon,” J. Ekon. Manaj., vol. 17, no. 2, pp. 1–7, 2022, [Online]. Available: http://oaj.stiecirebon.ac.id/index.php/jem
D. Rahayuningtiyas, R. Laksmono, and Y. D. Kuncjoro, “Analisis Pemanfaatan Coral Reef Sebagai Penyimpanan Cadangan Strategis Energi Untuk Ketahanan Energi Nasional,” J. Ketahanan Energi, vol. 7, pp. 44–59, 2021, [Online]. Available: https://jurnalprodi.idu.ac.id/index.php/KE/article/view/1070
R. Maulana, A. Voutama, and T. Ridwan, “Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store menggunakan Algoritma NBC,” J. Teknol. Terpadu, vol. 9, no. 1, pp. 42–48, 2023, doi: 10.54914/jtt.v9i1.609.
N. K. Hikmawati, “Analisis Kualitas Layanan My Pertamina Menggunakan Pendekatan e-GovQual pada Beberapa Kota Percobaan,” J. Manaj. Inform., vol. 12, no. 2, pp. 100–111, 2022, doi: 10.34010/jamika.v12i2.7977.
M. Mustasaruddin, E. Budianita, M. Fikry, and F. Yanto, “Klasifikasi Sentiment Review Aplikasi MyPertamina Menggunakan Word Embedding FastText dan SVM (Support Vector Machine),” J. Sist. Komput. dan Inform., vol. 4, no. 3, p. 526, 2023, doi: 10.30865/json.v4i3.5695.
A. Maulana, I. K. Afifah, A. Mubarrak, and K. R. Fauzan, “Comparison of Logistic Regression , MultionalNB , SVM , and K-NN Methods on Sentiment Analysis of Gojek App Reviews on The Google Play Store,” vol. 4, no. 6, pp. 1487–1494, 2023.
B. K. Prahani, I. A. Rizki, F. Nikmah, E. F. Khoir, E. Hariyono, and E. A. K. Putri, “Development of Affordable Pendulum and Collision Prop as Media in Science Learning,” TEM J., vol. 12, no. 4, pp. 2064–2070, 2023, doi: 10.18421/TEM124.
I. Nurul Hassanah, S. Faisal, A. Mutoi Siregar, “Perbandingan Algoritma Support Vector Machine Dengan Decision Tree Pada Aplikasi Ruang Guru,” Kumpul. J. Ilmu Komput., vol. 10, no. 1, pp. 39–50, 2023.
A. D. Adhi Putra, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, pp. 636–646, 2021, doi: 10.35957/jatisi.v8i2.962.
M. Syarifuddinn, “Analisis Sentimen Opini Publik Terhadap Efek Psbb Pada Twitter Dengan Algoritma Decision Tree,Knn, Dan Naïve Bayes,” INTI Nusa Mandiri, vol. 15, no. 1, pp. 87–94, 2020, doi: 10.33480/inti.v15i1.1433.
R. Puspita and A. Widodo, “Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS,” J. Inform. Univ. Pamulang, vol. 5, no. 4, p. 646, 2021, doi: 10.32493/informatika.v5i4.7622.
A. Turmudi Zy, A. Nugroho, A. Rivaldi, and I. Afriantoro, “Analisis Sentimen Terhadap Pembobolan Data pada Twitter dengan Algoritma Naive Bayes,” J. Teknol. Inform. dan Komput., vol. 8, no. 2, pp. 202–213, 2022, doi: 10.37012/jtik.v8i2.1240.
V. K. S. Que, A. Iriani, and H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp. 162–170, 2020, doi: 10.22146/jnteti.v9i2.102.
F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” … Teknol. Inf. dan …, vol. 6, no. 9, pp. 4305–4313, 2022, [Online]. Available: http://j-ptiik.ub.ac.id
A. M. Siregar, S. Faisal, and B. Widiharto, “Analisis Sentimen Masyarakat Terhadap Universitas Buana Perjuangan Karawang Dengan Algoritme SVM dan Naive Bayes,” Pros. Konf. Nas. Penelit. Dan Pengabdi. Univ. Buana Perjuangan Karawang, vol. 3, no. 1, pp. 25–36, 2023, [Online]. Available: https://journal.ubpkarawang.ac.id/index.php/ProsidingKNPP/article/view/4894
A. Nursalim, R. Novita, I. Systems, and S. Program, “Sentiment Analysis of Comments on Google Play Stoore, Twitter and Youtube to The MyPertamina Application with Support Vector Machine,” vol. 4, no. 6, pp. 1305–1312, 2023.
Maharani and Fathoni, “Analisis Sentimen Pengguna Terhadap Faktor Penggunaan PayPal Menggunakan Metode Decision Tree,” J. Ilm. Teknol. Inf. Asia, vol. 18, no. 1, pp. 71–83, 2024.
R. Sari, “Analisis Sentimen Pada Review Objek Wisata Dunia Fantasi Menggunakan Algoritma K-Nearest Neighbor (K-Nn),” EVOLUSI J. Sains dan Manaj., vol. 8, no. 1, pp. 10–17, 2020, doi: 10.31294/evolusi.v8i1.7371.
J. Muliawan, E. Dazki, and R. D. Kurniawan, “Sentiment Analysis of Indonesia ’ S Capital City Relocation Using Three Algorithms : Naïve Bayes , Knn , and Random Forest Analisis Sentimen Pemindahan Ibu Kota Negara Indonesia Menggunakan Tiga Algoritma : Naïve Bayes , Knn , Dan Random,” vol. 4, no. 5, pp. 1227–1236, 2023.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Metode Decision Tree Dan K-Nearest Neighbor Terhadap Ulasan Pengguna Aplikasi Mypertamina Menggunakan Confusion Matrix
Pages: 1085-1094
Copyright (c) 2024 Ade Syahril, Yana Cahyana, Dwi Sulistya Kusumaningrum, Tatang Rohana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















