Kajian Model Backpropagation dan Hybrid ANFIS Dalam Memprediksi Pertumbuhan Penduduk di Kabupaten Karawang
Abstract
Population growth rate prediction is a process of estimating the population in the future. Predictions are made so that the government can prepare strategic steps in anticipating the negative impact of an uncontrolled population increase. The research data is the population of Karawang Regency from 2011 to 2020. Backpropagation and Hybrid ANFIS are the models used in this study. The purpose of this study was to determine the RMSE value and scatter data formed from the results of the ANFIS Backpropagation and Hybrid training models in predicting population growth rates in Karawang Regency. In addition, this study is intended to determine the level of accuracy of the two models. The research step begins with research data validation, preprocessing, training and testing, as well as accuracy testing. Accuracy testing uses the Mean Absolute Percentage Error (MAPE) method. Backpropagation and Hybrid models in predicting the rate of population growth have worked well. This can be seen from the training results of the two models. Backpropagation model has the best RMSE of 0.0328 and Hybrid has the best RMSE of 0.021884. The results of the analysis of the accuracy of predicting population growth rates for 2019 and 2020 that have been carried out, both models have a good level of accuracy. Backpropagation has an average accuracy rate of 84.76%, while the Hybrid model has an average accuracy rate of 93.71%. Based on the results of accuracy testing, the Hybrid model has a better level of accuracy than the Backpropagation model.
Downloads
References
A. Diantoa dan P. Andri, “Prediksi Laju Pertumbuhan Penduduk Di Kabupaten Sleman Dengan Metode Adaptive Neuro-Fuzzy Inference System (ANFIS) Dan Metode Sugeno,” Jurnal Sarjana Teknik Informatika, vol. 6 No. 3, pp. 1-7, 2018.
M. Kumalasari, “Analisis Pertumbuhan Ekonomi, Angka Harapan Hidup, Angka Melek Huruf, Rata Rata Lama Sekolah, Pengeluaran Perkapita Dan Jumlah Penduduk Terhadap Tingkat Kemiskinan Di Jawa Tengah,” Universitas Diponegoro, Semarang, 2011.
T. Rohana, “Kajian Adaptive Neuro-Fuzzy Inference System (ANFIS) Dalam Memprediksi Penerimaan Mahasiswa Baru Pada Universitas Buana Perjuangan Karawang,” Techno Xplore, vol. 6 No. 1, pp. 44-54, 2021.
T. Rohana, “Implementasi Model Hybrid Dalam Memprediksi Penyebaran Covid-19 Di Wilayah Jawa Barat,” Seminastika 2021, pp. 124-137, 2021.
Allyna Virrayyani, Sutikno, “Prediksi Penjualan Barang Menggunakan Metode Adaptive Neuro-Fuzzy Inference System (ANFIS),” Khazanah Informatika, vol. 2 No. 2, pp. 57-63, 2016.
E. Siregar, “Analisis Metode Backpropagation Dengan Fungsi Aktivasi Sigmoid Bipolar Dan Fungsi Linear Dalam Prediksi Pertumbuhan Penduduk,” Thesis, 2019.
Y. Y. Salman Alfarisi Salimu, “Prediksi Tingkat Kedatangan Wisatawan Asing Menggunakan Metode Backpropagation,” Jurnal Informatika Ekonomi Bisnis, vol. 2 No. 4, pp. 98-103 , 2020.
V. H. Dio, Solikhun, M. Fauzan, P. W. Agus dan R. Fitri, “Penerapan Algoritma Backpropagation Dalam Memprediksi Hasil Panen Tanaman Sayuran,” BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer , vol. 2 No. 1, pp. 21-29, 2021.
R. Gandhi, “Prediksi Produktivitas Padi Menggunakan Jaringan Syaraf Tiruan Backpropagation,” Universitas Brawijaya , Malang, 2018.
Fahrur Rozi, Farid Sukmana, “Penggunaan Moving Average Dengan Metode Hybrid Artificial Neural Network Dan Fuzzy Inference System Untuk Prediksi Cuaca,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 1 No. 2, p. 38 – 42, 2016.
W. S. Aisyah Fany Achmalia*, “Peramalan Penjualan Semen Menggunakan Backpropagation Neural Network Dan Recurrent Neural Network,” UNNES Journal of Mathematics , 2020.
N. Azizah, “METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS)UNTUK PREDIKSI TINGKAT LAYANAN JALAN,” DISPROTEK, vol. 7 No. 1, pp. 98-103, 2016.
Budi Handarbeni S. Atma, Sugiyarto, , “Adaptive Neuro Fuzzy Inference System Untuk Peramalan Jumlah Wisatawan,” Jurnal Ilmiah Matematika, vol. 7 No. 1, pp. 1-7, 2020.
J. Hanl, M. Kamber dan J. Pei, Data Mining Concepts and Techniques, University of Illinois at Urbana–Champaign, 2012.
M. M. Candra Dewi, “Perbandingan Akurasi Backpropagation Neural Network dan ANFIS Untuk Memprediksi Cuaca,” NATURAL-A, vol. 1 No. 1, pp. 7-13, 2013.
F. Nida dan I. A. Anneke, “Model Hybrid SARIMA (Seasonal Autoregressive Integrated Moving Average ) - ANFIS (Adaptive Neuro Fuzzy Inference System) pada Data Inflasi Indonesia Tahun 2003-2018,” Prosiding Statistika, vol. 5 No. 2, pp. 96-105, 2019.
A. B. Alan Boy Sandy Damanik, “Penerapan Jaringan Saraf Tiruan Dalam Memprediksi Indikator Utama Ekonomi Dunia,” Jurnal Sains Komputer & Informatika (J-SAKTI) , vol. 2 No. 2, pp. 169-178, 2018.
Noor Azizah, Kusworo Adi, Achmad Widodo, “Metode Adaptive Neuro Fuzzy Inference System (ANFIS) Untuk Prediksi Tingkat Layanan Jalan,” Jurnal Sistem Informasi Bisnis , pp. 127-131, 2013.
T. Rohana, “Implementasi Adaptive Neural Fuzzy Inference System (ANFIS) untuk Menguji Kualitas Printed Circuit Board (PCB),” Techno Xplore, vol. 5 No: 2, pp. 79-90, 2020.
N. U. W. Hasdi Putra, “Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 6 No. 2, pp. 100-107 , 2020.
Komang Triantita Neti Lestari, Moh. Ali Albar, “Penerapan Metode Backpropagation Dalam Memprediksi Jumlah Kunjungan Wisatawan Ke Provinsi Nusa Tenggara Barat (NTB),” J-COSINE, vol. 2 No. 1, no. , pp. 39-48, 2019.
H. J. Meychael Adi Putra Hutabarat, “Penerapan Algoritma Backpropagation Dalam Memprediksi Jumlah,” Journal of Information System Research (JOSH), pp. 63-69, 2020.
M. A. R. d. E. Riksakomara, “Peramalan Jumlah Produksi Ikan dengan Menggunakan Backpropagation Neural Network (Studi Kasus: UPTD Pelabuhan Perikanan Banjarmasin),” Jurnal Teknik ITS, vol. 6 No. 1, pp. 142-147, 2017.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Kajian Model Backpropagation dan Hybrid ANFIS Dalam Memprediksi Pertumbuhan Penduduk di Kabupaten Karawang
Pages: 374-381
Copyright (c) 2023 Tatang Rohana, Jamaludin Indra, Gugy Guztaman Munzi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















