Analisis Prediksi Banjir di Indonesia Menggunakan Algoritma Support Vector Machine dan Random Forest


  • Indarto Aditya Purnomo * Mail Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • Jamaludin Indra Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • Elsa Elvira Awal Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • Tatang Rohana Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • (*) Corresponding Author
Keywords: Flood; Support Vector Machine; Random Forest; RSME; Prediction

Abstract

Natural disasters frequently occur in Indonesia, such as floods, landslides, and volcanic eruptions. Geological factors, such as the convergence of four major tectonic plates, make Indonesia vulnerable to natural disasters. Statistical data from the National Disaster Management Agency show an increase in flood occurrences each year, peaking in 2021 with 1,794 incidents. Early anticipation is necessary to minimize the impact of natural disasters, and predictive patterns are becoming new knowledge for preventing and managing these disasters. This study applies the Support Vector Machine and Random Forest algorithms. The results of this study predict that the largest number of floods from 2024 to 2026 in Indonesia will occur in Aceh with 240 floods, North Sumatra with 215 floods, West Java with 210 floods, and Central Java with 160 floods. The best algorithm comparison results were achieved with Random Forest, which had an accuracy of 99.6% and an average RMSE value of 3.834.

Downloads

Download data is not yet available.

References

D. Susanti and T. Wahyuni, “ANALISIS POTENSI BENCANA ALAM TANAH LONGSOR KABUPATEN MAJALENGKA MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER,” INFOTECH journal, vol. 9, no. 2, pp. 299–306, Jul. 2023, doi: 10.31949/infotech.v9i2.5645.

M. Althaf Pramasetya Perkasa, “Analisis Probabilitas Bencana Alam dengan Penerapan Data Mining Menggunakan K-Means dan Linier Regression.” 2023

S. H. Hengkelare et al., “MITIGASI RISIKO BENCANA BANJIR DI MANADO,” Jurnal Spasial, vol. 8, no. 2, p. 2021.

D. D. Utomo and F. Y. D. Marta, “Dampak Bencana Alam Terhadap Perekonomian Masyarakat di Kabupaten Tanah Datar,” JURNAL TERAPAN PEMERINTAHAN MINANGKABAU, vol. 2, no. 1, pp. 92–97, Jun. 2022, doi: 10.33701/jtpm.v2i1.2395.

Y. Nuryaman, A. Yudha, and A. Asistyasari, “Analisis Prediksi Bencana Angin Puyuh di Jawabarat menggunakan Algoritma K-NN dan C4.5 Berbasis PSO,” Simposium Nasional Ilmiah dengan tema: (Peningkatan Kualitas Publikasi Ilmiah melalui Hasil Riset dan Pengabdian kepada Masyarakat, pp. 513–514, Nov. 2019.

N. Hidayati, P. T. Pungkasanti, and N. Wakhidah, “Prediksi Bencana Alam di Kota Semarang Menggunakan Algoritma Markov Chains,” Jurnal Sains dan Informatika, vol. 7, no. 1, pp. 107–116, Jul. 2021, doi: 10.34128/jsi.v7i1.283.

A. Salaffudin, N. Nafi’iyah, N. Q. Nawafilah, and U. I. Lamongan, “Algoritma Backpropagation untuk Memprediksi Korban Bencana Alam,” SMATIKA, vol. 9, no. 2087–0256, pp. 77–79, Dec. 2019.

M. Murdiaty, A. Angela, and C. Sylvia, “Pengelompokkan Data Bencana Alam Berdasarkan Wilayah, Waktu, Jumlah Korban dan Kerusakan Fasilitas Dengan Algoritma K-Means,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 3, p. 744, Jul. 2020, doi: 10.30865/mib.v4i3.2213.

Y. Ramdhani and A. Mubarok, “Analisis Time Series Prediksi Penutupan Harga Saham Antm.Jk Dengan Algoritma SVM Model Regresi,” JURNAL RESPONSIF, vol. 1, no. 1, Aug. 2019, [Online]. Available: http://ejurnal.univbsi.id/index.php/jti

S. Dwiasnati and Y. Devianto, “Optimasi Prediksi Bencana Banjir menggunakan Algoritma SVM untuk penentuan Daerah Rawan Bencana Banjir,” SISFOTEK, vol. 5, pp. 202–203, Sep. 2021.

Mia, A. F. N. Masruriyah, and A. R. Pratama, “KOMPARASI MODEL DECISION TREE DAN RANDOM FOREST UNTUK MEMPREDIKSI PENYAKIT JANTUNG,” Scientific Student Journal for Information, Technology and Science, vol. 2, no. 2715–2766, p. 126, Jun. 2023.

D. Fitrianah, W. Gunawan, and A. Puspita Sari, “Studi Komparasi Algoritma Klasifikasi C5.0, SVM dan Naive Bayes dengan Studi Kasus Prediksi Banjir Comparative Study of Classification Algorithm between C5.0, SVM and Naive Bayes with Case Study of Flood Prediction,” Feb. 2022.

A. Fitra, “Pengembangan Model Prediksi Masa Studi Sarjana Menggunakan Regresi Linear,” Jun. 2022.

M. Bagas, A. Darmawan, F. Dewanta, and S. Astuti, “Analisis Perbandingan Algoritma Decision Tree, Random Forest, dan Naïve Bayes untuk Prediksi Banjir di Desa Dayeuhkolot Comparative Analysis of Decision Tree, Random Forest, and Naïve Bayes Algorithm for Flood Prediction at Dayeuhkolot Village,” TELKA, vol. 9, no. 1, pp. 52–61, May 2023.

R. Y. Hayuningtyas and R. Sari, “Implementasi Data Mining Dengan Algoritma Multiple Linear Regression Untuk Memprediksi Penyakit Diabetes.,” Jurnal Teknik Komputer AMIK BSI, vol. 8, pp. 40–43, Jan. 2022, doi: 10.31294/jtk.v4i2.

U. Amelia, J. Indra, and A. F. N. Masruriyah, “IMPLEMENTASI ALGORITMA SUPPORT VECTOR MACHINE(SVM) UNTUK PREDIKSI PENYAKIT STROKEDENGAN ATRIBUT BERPENGARUH,” Scientific Student Journal for Information, Technology and Science, no. 2715–2766, Jun. 2024.

H. Badruzzaman, T. Al Mudzakir, and Rahmat, “IMPLEMENTASI ALGORITMA CONVOLUTIONAL NEURAL NETWORKDAN SUPPORT VECTOR MACHINE UNTUK PENDETEKSIAN CANDI JIWA DAN CANDI BLANDONGAN,” Scientific Student Journal for Information, Technology and Science, no. 2715–2766, Jun. 2024.

U. Erdiansyah, A. Irmansyah Lubis, and K. Erwansyah, “Komparasi Metode K-Nearest Neighbor dan Random Forest Dalam Prediksi Akurasi Klasifikasi Pengobatan Penyakit Kutil,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, p. 208, Jan. 2022, doi: 10.30865/mib.v6i1.3373.

W. Apriliah et al., “SISTEMASI: Jurnal Sistem Informasi Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest,” 2021. [Online]. Available: http://sistemasi.ftik.unisi.ac.id

A. A. Nurhalizah, Y. Cahyana, and Rahmat, “Model Prediksi Kekuatan Gempa Dengan Menggunakan Algoritma Linear Regression Dan Support Vector Regression (Studi Kasus BMKG),” no. 2, p. 41, 2024, [Online]. Available: https://www.kaggle.com/datasets/kekavigi/earthquakes-in-ndonesia.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Prediksi Banjir di Indonesia Menggunakan Algoritma Support Vector Machine dan Random Forest

Dimensions Badge
Article History
Submitted: 2024-09-24
Published: 2024-10-15
Abstract View: 1248 times
PDF Download: 607 times
How to Cite
Purnomo, I., Indra, J., Awal, E., & Rohana, T. (2024). Analisis Prediksi Banjir di Indonesia Menggunakan Algoritma Support Vector Machine dan Random Forest. Journal of Information System Research (JOSH), 6(1), 219-228. https://doi.org/10.47065/josh.v6i1.5958
Section
Articles