Analisis Prediksi Banjir di Indonesia Menggunakan Algoritma Support Vector Machine dan Random Forest
Abstract
Natural disasters frequently occur in Indonesia, such as floods, landslides, and volcanic eruptions. Geological factors, such as the convergence of four major tectonic plates, make Indonesia vulnerable to natural disasters. Statistical data from the National Disaster Management Agency show an increase in flood occurrences each year, peaking in 2021 with 1,794 incidents. Early anticipation is necessary to minimize the impact of natural disasters, and predictive patterns are becoming new knowledge for preventing and managing these disasters. This study applies the Support Vector Machine and Random Forest algorithms. The results of this study predict that the largest number of floods from 2024 to 2026 in Indonesia will occur in Aceh with 240 floods, North Sumatra with 215 floods, West Java with 210 floods, and Central Java with 160 floods. The best algorithm comparison results were achieved with Random Forest, which had an accuracy of 99.6% and an average RMSE value of 3.834.
Downloads
References
D. Susanti and T. Wahyuni, “ANALISIS POTENSI BENCANA ALAM TANAH LONGSOR KABUPATEN MAJALENGKA MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER,” INFOTECH journal, vol. 9, no. 2, pp. 299–306, Jul. 2023, doi: 10.31949/infotech.v9i2.5645.
M. Althaf Pramasetya Perkasa, “Analisis Probabilitas Bencana Alam dengan Penerapan Data Mining Menggunakan K-Means dan Linier Regression.” 2023
S. H. Hengkelare et al., “MITIGASI RISIKO BENCANA BANJIR DI MANADO,” Jurnal Spasial, vol. 8, no. 2, p. 2021.
D. D. Utomo and F. Y. D. Marta, “Dampak Bencana Alam Terhadap Perekonomian Masyarakat di Kabupaten Tanah Datar,” JURNAL TERAPAN PEMERINTAHAN MINANGKABAU, vol. 2, no. 1, pp. 92–97, Jun. 2022, doi: 10.33701/jtpm.v2i1.2395.
Y. Nuryaman, A. Yudha, and A. Asistyasari, “Analisis Prediksi Bencana Angin Puyuh di Jawabarat menggunakan Algoritma K-NN dan C4.5 Berbasis PSO,” Simposium Nasional Ilmiah dengan tema: (Peningkatan Kualitas Publikasi Ilmiah melalui Hasil Riset dan Pengabdian kepada Masyarakat, pp. 513–514, Nov. 2019.
N. Hidayati, P. T. Pungkasanti, and N. Wakhidah, “Prediksi Bencana Alam di Kota Semarang Menggunakan Algoritma Markov Chains,” Jurnal Sains dan Informatika, vol. 7, no. 1, pp. 107–116, Jul. 2021, doi: 10.34128/jsi.v7i1.283.
A. Salaffudin, N. Nafi’iyah, N. Q. Nawafilah, and U. I. Lamongan, “Algoritma Backpropagation untuk Memprediksi Korban Bencana Alam,” SMATIKA, vol. 9, no. 2087–0256, pp. 77–79, Dec. 2019.
M. Murdiaty, A. Angela, and C. Sylvia, “Pengelompokkan Data Bencana Alam Berdasarkan Wilayah, Waktu, Jumlah Korban dan Kerusakan Fasilitas Dengan Algoritma K-Means,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 3, p. 744, Jul. 2020, doi: 10.30865/mib.v4i3.2213.
Y. Ramdhani and A. Mubarok, “Analisis Time Series Prediksi Penutupan Harga Saham Antm.Jk Dengan Algoritma SVM Model Regresi,” JURNAL RESPONSIF, vol. 1, no. 1, Aug. 2019, [Online]. Available: http://ejurnal.univbsi.id/index.php/jti
S. Dwiasnati and Y. Devianto, “Optimasi Prediksi Bencana Banjir menggunakan Algoritma SVM untuk penentuan Daerah Rawan Bencana Banjir,” SISFOTEK, vol. 5, pp. 202–203, Sep. 2021.
Mia, A. F. N. Masruriyah, and A. R. Pratama, “KOMPARASI MODEL DECISION TREE DAN RANDOM FOREST UNTUK MEMPREDIKSI PENYAKIT JANTUNG,” Scientific Student Journal for Information, Technology and Science, vol. 2, no. 2715–2766, p. 126, Jun. 2023.
D. Fitrianah, W. Gunawan, and A. Puspita Sari, “Studi Komparasi Algoritma Klasifikasi C5.0, SVM dan Naive Bayes dengan Studi Kasus Prediksi Banjir Comparative Study of Classification Algorithm between C5.0, SVM and Naive Bayes with Case Study of Flood Prediction,” Feb. 2022.
A. Fitra, “Pengembangan Model Prediksi Masa Studi Sarjana Menggunakan Regresi Linear,” Jun. 2022.
M. Bagas, A. Darmawan, F. Dewanta, and S. Astuti, “Analisis Perbandingan Algoritma Decision Tree, Random Forest, dan Naïve Bayes untuk Prediksi Banjir di Desa Dayeuhkolot Comparative Analysis of Decision Tree, Random Forest, and Naïve Bayes Algorithm for Flood Prediction at Dayeuhkolot Village,” TELKA, vol. 9, no. 1, pp. 52–61, May 2023.
R. Y. Hayuningtyas and R. Sari, “Implementasi Data Mining Dengan Algoritma Multiple Linear Regression Untuk Memprediksi Penyakit Diabetes.,” Jurnal Teknik Komputer AMIK BSI, vol. 8, pp. 40–43, Jan. 2022, doi: 10.31294/jtk.v4i2.
U. Amelia, J. Indra, and A. F. N. Masruriyah, “IMPLEMENTASI ALGORITMA SUPPORT VECTOR MACHINE(SVM) UNTUK PREDIKSI PENYAKIT STROKEDENGAN ATRIBUT BERPENGARUH,” Scientific Student Journal for Information, Technology and Science, no. 2715–2766, Jun. 2024.
H. Badruzzaman, T. Al Mudzakir, and Rahmat, “IMPLEMENTASI ALGORITMA CONVOLUTIONAL NEURAL NETWORKDAN SUPPORT VECTOR MACHINE UNTUK PENDETEKSIAN CANDI JIWA DAN CANDI BLANDONGAN,” Scientific Student Journal for Information, Technology and Science, no. 2715–2766, Jun. 2024.
U. Erdiansyah, A. Irmansyah Lubis, and K. Erwansyah, “Komparasi Metode K-Nearest Neighbor dan Random Forest Dalam Prediksi Akurasi Klasifikasi Pengobatan Penyakit Kutil,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, p. 208, Jan. 2022, doi: 10.30865/mib.v6i1.3373.
W. Apriliah et al., “SISTEMASI: Jurnal Sistem Informasi Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest,” 2021. [Online]. Available: http://sistemasi.ftik.unisi.ac.id
A. A. Nurhalizah, Y. Cahyana, and Rahmat, “Model Prediksi Kekuatan Gempa Dengan Menggunakan Algoritma Linear Regression Dan Support Vector Regression (Studi Kasus BMKG),” no. 2, p. 41, 2024, [Online]. Available: https://www.kaggle.com/datasets/kekavigi/earthquakes-in-ndonesia.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Prediksi Banjir di Indonesia Menggunakan Algoritma Support Vector Machine dan Random Forest
Pages: 219-228
Copyright (c) 2024 Indarto Aditya Purnomo, Jamaludin Indra, Elsa Elvira Awal, Tatang Rohana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















