Penerapan Metode Naive Bayes Dalam Klasifikasi Spam SMS Menggunakan Fitur Teks Untuk Mengatasi Ancaman Pada Pengguna
Abstract
One of the negative impacts of current digital advances is the increasing number of SMS spam. Spam SMS poses a security risk to users because they can contain malicious links or requests for personal information that are used for malware, smishing, or fraud attacks. However, with the various protection measures available, not all spam SMS can be classified and prevented effectively. However, this problem can be minimized by creating an anti-spam SMS model which aims to classify SMS types. So this research aims to classify types of SMS that contain spam and spam by applying the Naïve Bayes algorithm. In this study, the dataset consisted of 5572 records consisting of 2 categories, namely spam and ham. This algorithm is able to show satisfactory performance in differentiating spam and spam messages because, according to the diversity of literature, the Naïve Bayes algorithm is suitable for use in English language datasets. The evaluation model displays good results with accuracy reaching 93.2%, precision 93.7%, recall 93.2%, and F1-score 91.6%. In addition, analysis in the research using the Receiver Operating Characteristic (ROC) curve shows an accuracy rate of 97.3%, indicating that the model has very good performance in classifying spam in SMS messages. However, there is still room for improvement through the use of new methods and larger and more diverse data sets. This research has an important involvement in working on communication security and user experience in using short message services.
Downloads
References
A. R. Juwita, L. Rahmatiani, T. Al Mudzakir, and A. R. Pratama, “Pemanfaatan Penggunaan Teknologi Internet Sehat Untuk Pendidikan,” J. Buana Pengabdi., vol. 5, no. 2, pp. 92–98, 2023.
H. Herwanto, N. L. Chusna, and M. S. Arif, “Klasifikasi SMS Spam Berbahasa Indonesia Menggunakan Algoritma Multinomial Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 4, p. 1316, 2021, doi: 10.30865/mib.v5i4.3119.
R. Dwiyansaputra, G. S. Nugraha, F. Bimantoro, and A. Aranta, “Deteksi Sms Spam Berbahasa Indonesia Menggunakan Tf-Idf Dan Stochastic Gradient Descent Classifier,” J. Teknol. Informasi, Komput. dan Apl., vol. 3, no. 2, pp. 200–207, 2021.
M. H. S. Ajat, “Klasifikasi Sms Spam Dengan Komparasi Metode Svm Dan Naïve Bayes,” Method. J. Tek. Inform. dan Sist. Inf., vol. 9, no. 1, pp. 31–34, 2023, doi: 10.46880/mtk.v9i1.1694.
P. Apricia, “Kinerja Naïve Bayes Classifier Pada Penyaringan ShortMessage Service (Sms) Spam,” vol. 04, no. 02, pp. 59–66, 2023.
V. No, “Komparasi Algoritma Naïve Bayes dan Support Vectors Machine pada Analisis Sentimen SMS HAM dan SPAM 1 Program Studi Informasi Akuntansi Kampus Kota Bogor , Universitas Bina Sarana Infromatika 2 Program Studi Sistem Informasi , Universitas Nusa Mandiri 3 P,” vol. 4, no. 2, pp. 249–258, 2021.
A. Wahid, M. Baharulloh, R. Kahfiansyah, T. Abrilianto, A. Saifudin, and S. Mulyati, “Identifikasi SMS Spam Menggunakan Metode Naive Bayes,” J. Inform. Univ. Pamulang, vol. 6, no. 3, pp. 536–539, 2021, [Online]. Available: http://openjournal.unpam.ac.id/index.php/informatika536
F. D. Pramakrisna, F. D. Adhinata, and N. A. F. Tanjung, “Aplikasi Klasifikasi SMS Berbasis Web Menggunakan Algoritma Logistic Regression,” Teknika, vol. 11, no. 2, pp. 90–97, 2022, doi: 10.34148/teknika.v11i2.466.
A. M. Zuhdi, E. Utami, and S. Raharjo, “Abdul Malik Zuhdi 1) , Ema Utami 2) , Suwanto Raharjo 3) 3,” vol. 5, pp. 1–7, 2019.
U. Banten Jaya, J. Syeh Nawawi Albantani, and S. -Banten, “Perbandingan Algoritma Naïve Bayes Dan Support Vector Machine (Svm) Dalam Klasifikasi Sms Spam Berbahasa Indonesia,” SAINTEK (Jurnal Sains Teknol. ), vol. 3, no., pp. 178–194, 2019.
N. Fitriyah, B. Warsito, and D. A. I. Maruddani, “Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (Svm,” J. Gaussian, vol. 9, no. 3, pp. 376–390, 2020, doi: 10.14710/j.gauss.v9i3.28932.
L. D. Utami, L. Yusuf, and D. Nurlaela, “Komparasi Algoritma Naïve Bayes dan Support Vectors Machine pada Analisis Sentimen SMS HAM dan SPAM,” Infotek J. Inform. dan Teknol., vol. 4, no. 2, pp. 249–258, 2021, doi: 10.29408/jit.v4i2.3665.
S. Rabbani, D. Safitri, N. Rahmadhani, A. A. F. Sani, and M. K. Anam, “Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 153–160, 2023, doi: 10.57152/malcom.v3i2.897.
A. Setiyono and H. F. Pardede, “Klasifikasi Sms Spam Menggunakan Support Vector Machine,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 275–280, 2019, doi: 10.33480/pilar.v15i2.693.
D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–11, 2020, doi: 10.21107/edutic.v7i1.8779.
I. W. B. Suryawan, N. W. Utami, and K. Q. Fredlina, “Analisis Sentimen Review Wisatawan pada Objek Wisata Ubud Menggunakan Algoritma Support Vector Machine,” J. Inform. Teknol. dan Sains, vol. 5, no. 1, pp. 133–140, 2023.
N. Arifin, U. Enri, and N. Sulistiyowati, “Penerapan Algoritma Support Vector Machine (SVM) dengan TF-IDF N-Gram untuk Text Classification,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 6, no. 2, p. 129, 2021, doi: 10.30998/string.v6i2.10133.
E. Suryati, Styawati, and A. Ari Aldino, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM),” J. Teknol. dan Sist. Inf., vol. 4, no. 1, pp. 96–106, 2023.
I. P. Rahayu, A. Fauzi, and J. Indra, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Naive Bayes Dan Support Vector Machine,” J. Sist. Komput. dan Inform., vol. 4, no. 2, p. 296, 2022, doi: 10.30865/json.v4i2.5381.
T. Fadiyah Basar, D. E. Ratnawati, and I. Arwani, “Analisis Sentimen Pengguna Twitter terhadap Pembayaran Cashless menggunakan Shopeepay dengan Algoritma Random Forest,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 3, pp. 1426–1433, 2022, [Online]. Available: http://j-ptiik.ub.ac.id
I. F. Rozi, A. T. Firdausi, and Khalimatul Islamiyah, “Analisis Sentimen Pada Twitter Mengenai Pasca Bencana Menggunakan Metode Naïve Bayes Dengan Fitur N-Gram,” J. Inform. Polinema, vol. 6, no. 2, pp. 33–39, 2023, doi: 10.33795/jip.v6i2.316.
A. Nur et al., “Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) 80 Implementasi Algoritma Regresi Logistik untuk Binary Classification dalam Spam SMS dan WhatsApp Penulis Korespondensi,” Agustus, vol. 7, pp. 2549–7952, 2023.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Metode Naive Bayes Dalam Klasifikasi Spam SMS Menggunakan Fitur Teks Untuk Mengatasi Ancaman Pada Pengguna
Pages: 873-880
Copyright (c) 2024 Fathimah Noer Azzahra, Tatang Rohana, Rahmat Rahmat, Ayu Ratna Juwita

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















