Analisa Perbandingan Algoritma Support Vector Machine dan K-Nearest Neighbors Terhadap Ulasan Aplikasi Vidio


  • Rizki Bintang Gumilar * Mail Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • Yana Cahyana Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • Cici Emilia Sukmawati Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • Amril Mutoi Siregar Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • (*) Corresponding Author
Keywords: Sentiment; Vidio; Support Vector Machine (SVM); K-Nearest Neighbors (KNN); Indonesian Internet Users; User Satisfaction

Abstract

Internet usage in Indonesia reached 77% of the total population in January 2023, with Over The Top (OTT) services showing user growth of 25% every year. The Vidio application, one of the popular OTT platforms with downloads exceeding 50 million, has a 3.5 star rating based on 649 thousand reviews on the Google Play Store. Despite its popularity, Vidio faces complaints regarding limited film selection, payment errors, and excessive advertising, which affects user satisfaction. This research aims to analyze the opinions of Vidio application user comments by applying the SVM (Support Vector Machine) method and the KNN (K-Nearest Neighbors) method to determine the model with the best accuracy. 15,000 review data were collected through scraping, then processed using text preprocessing and TF-IDF vectorization techniques. Model evaluation shows that SVM has an accuracy value of 82%, a precision value of 82%, a recall value of 83%, and an F1-score value of 82%, while KNN has an accuracy of 69%, precision 74%, recall 73%, and F1-score 69% . The research results show that SVM is superior to KNN in classifying the sentiment of Vidio application reviews. It is hoped that these findings can be used by application developers in an effort to improve service and satisfaction of Vidio application users.

Downloads

Download data is not yet available.

References

H. A. Ramadhan, B. M. Purwaamijaya, and R. G. Guntara, “Pengaruh User Experience terhadap Customer Satisfaction pada Aplikasi Seluler Streaming Vidio,” JTIM J. Teknol. Inf. dan Multimed., vol. 5, no. 2, pp. 122–133, 2023, doi: 10.35746/jtim.v5i2.367.

E. Fitri, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine,” J. Transform., vol. 18, no. 1, p. 71, 2020, doi: 10.26623/transformatika.v18i1.2317.

M. Gharzouli, A. K. Hamama, and Z. Khattabi, “Topic-based sentiment analysis of hotel reviews,” Curr. Issues Tour., vol. 25, no. 9, pp. 1368–1375, 2022, doi: 10.1080/13683500.2021.1940107.

M. Fudhail Ferio Supeli and S. Setiaji, “Klasifikasi Sentimen Positif Dan Negatif Pada Aplikasi Vidio Dengan Algoritma K-Nearest Neighbor,” Indones. J. Comput. Sci., vol. 2, no. 1, pp. 7–15, 2023, doi: 10.31294/ijcs.v2i1.1874.

B. Supriyanto, Sumijan, and Yuhandri, “Audit Keamanan Website Menggunakan Acunetix Web Vulnerability (Studi Kasus Di SMK Muhammadiyah 3 Terpadu Pekanbaru),” J. CoSciTech (Computer Sci. Inf. Technol., vol. 5, no. 1, pp. 134–143, 2024, doi: 10.37859/coscitech.v5i1.6705.

M. T. Waluyan and K. D. Hartomo, “Analisis Sentimen Kebutuhan Fast Track Pada Originals Vidio Menggunakan Support Vector Machine,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 3, pp. 2153–2162, 2022, doi: 10.35957/jatisi.v9i3.2348.

N. Lestari, E. Haerani, and R. M. Candra, “Analisa Sentimen Ulasan Aplikasi Wetv Untuk Peningkatan Layanan Menggunakan Metode Naïve Bayes,” J. Inf. Syst. Res., vol. 4, no. 3, pp. 874–882, 2023, doi: 10.47065/josh.v4i3.3355.

I. S. K. Idris, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),” Jambura J. Electr. Electron. Eng., vol. 5, no. 1, pp. 32–35, 2023, doi: 10.37905/jjeee.v5i1.16830.

A. M. Ndapamuri, D. Manongga, and A. Iriani, “Analisis Sentimen Ulasan Aplikasi Tripadvisor Dengan Metode Support Vector Machine, K-Nearest Neighbor, Dan Naive Bayes,” INOVTEK Polbeng - Seri Inform., vol. 8, no. 1, p. 127, 2023, doi: 10.35314/isi.v8i1.3260.

P. Aditiya, U. Enri, and I. Maulana, “Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 1020, 2022, doi: 10.30865/jurikom.v9i4.4673.

F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” … Teknol. Inf. dan …, vol. 6, no. 9, pp. 4305–4313, 2022, [Online]. Available: http://j-ptiik.ub.ac.id

T. Tinaliah and T. Elizabeth, “Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 4, pp. 3436–3442, 2022, doi: 10.35957/jatisi.v9i4.3586.

S. Fide, S. Suparti, and S. Sudarno, “Analisis Sentimen Ulasan Aplikasi Tiktok Di Google Play Menggunakan Metode Support Vector Machine (Svm) Dan Asosiasi,” J. Gaussian, vol. 10, no. 3, pp. 346–358, 2021, doi: 10.14710/j.gauss.v10i3.32786.

D. Asfi Warraihan, I. Permana, R. Novita, and A. Marsal, “Analisis Sentimen Pengguna Transportasi Online Maxim Pada Instagram Menggunakan Naïve Bayes Classifier dan K-Nearest Neighbor,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1134–1143, 2023, doi: 10.30865/mib.v7i3.6336.

A. A. Arifiyanti, N. R. Shantika, and A. O. Syafira, “Analisis Sentimen Ulasan Pengguna Bsi Mobile Pada Google Play Dengan Pendekatan Supervised Learning,” J. Inform. Polinema, vol. 9, no. 3, pp. 283–288, 2023, doi: 10.33795/jip.v9i3.1003.

J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2019, doi: 10.52985/insyst.v1i1.36.

Wahyu Sejati, Ankur Singh Bist, and Amirsyah Tambunan, “Pengembangan Analisis Sentimen dalam Rekayasa Software Engineering menggunakan tinjauan literatur sistematis,” J. MENTARI Manajemen, Pendidik. dan Teknol. Inf., vol. 2, no. 1, pp. 95–103, 2023, doi: 10.33050/mentari.v2i1.377.

R. R. A. Siregar, Z. U. Siregar, and R. Arianto, “Klasifikasi Sentiment Analysis Pada Komentar Peserta Diklat Menggunakan Metode K-Nearest Neighbor,” Kilat, vol. 8, no. 1, pp. 81–92, 2019, doi: 10.33322/kilat.v8i1.421.

A. M. Siregar, S. Faisal, and B. Widiharto, “Analisis Sentimen Masyarakat Terhadap Universitas Buana Perjuangan Karawang Dengan Algoritme SVM dan Naive Bayes,” Pros. Konf. Nas. Penelit. Dan Pengabdi. Univ. Buana Perjuangan Karawang, vol. 3, no. 1, pp. 25–36, 2023, [Online]. Available: https://journal.ubpkarawang.ac.id/index/php/ProsidingKNPP/article/view/4894

A. Maulana, Inayah Khasnaputri Afifah, Asghafi Mubarrak, Kiagus Rachmat Fauzan, Ardhan Dwintara, and B. P. Zen, “Comparison of Logistic Regression, Multinomialnb, Svm, and K-Nn Methods on Sentiment Analysis of Gojek App Reviews on the Google Play Store,” J. Tek. Inform., vol. 4, no. 6, pp. 1487–1494, 2023, doi: 10.52436/1.jutif.2023.4.6.863.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisa Perbandingan Algoritma Support Vector Machine dan K-Nearest Neighbors Terhadap Ulasan Aplikasi Vidio

Dimensions Badge
Article History
Submitted: 2024-07-20
Published: 2024-07-27
Abstract View: 718 times
PDF Download: 361 times
How to Cite
Gumilar, R., Cahyana, Y., Sukmawati, C., & Siregar, A. (2024). Analisa Perbandingan Algoritma Support Vector Machine dan K-Nearest Neighbors Terhadap Ulasan Aplikasi Vidio. Journal of Information System Research (JOSH), 5(4), 1188-1195. https://doi.org/10.47065/josh.v5i4.5640
Issue
Section
Articles