Klasifikasi Sentimen Masyarakat di Twitter terhadap Ganjar Pranowo dengan Metode Naïve Bayes Classifier
Abstract
Indonesia is a country with a Democratic political system. The public is given freedom of speech, collaboration and public criticism. In the modern era, the use of social media is growing rapidly at the community level. One of the social media trends in Indonesia is Twitter which is used to convey aspirations to the government and as a means to convey daily activities, opinions, culture and get the latest information or news from Indonesia and abroad. Public opinion taken from Twitter can be positive, negative and neutral. The number of tweets on Twitter one of the trend topics in Indonesia is Ganjar Pranowo, can be used as a source of data in the assessment of sentiment classification which is processed to produce accuracy values. This study aims to classify public opinion on social media Twitter about Ganjar Pranowo using Naïve Bayes Classifier method. In the classification processing using a dataset of 4000 tweet data with two labeling classes, positive and negative to determine the efficiency of NBC performance combined with TF-IDF weighting, feature selection using supervised learning approach techniques. The results of the test on the classification of public sentiment research on Twitter about Ganjar Pranowo using NBC method using 10% of the test data from the dataset used to produce an accuracy value of 83.0%.
Downloads
References
N. M. A. J. Astari, G. H. D. Dewa, and I. Gede, “Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier,” J. Sist. dan Inform., vol. 15, no. 1, pp. 27–29, 2020.
F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” INOVTEK Polbeng - Seri Inform., vol. 3, no. 1, p. 50, 2018.
V. A. Fitri, R. Andreswari, and M. A. Hasibuan, “Sentiment analysis of social media Twitter with case of Anti-LGBT campaign in Indonesia using Naïve Bayes, decision tree, and random forest algorithm,” Procedia Comput. Sci., vol. 161, pp. 765–772, 2019.
R. Milla and M. Sholekhah, “Sosok ganjar pranowo sebagai pemimpin jawa tengah,” Univ. Muhammadiyah Yogyakarta, no. June, 2021.
E. S. Romaito, M. K. Anam, Rahmaddeni, and A. N. Ulfah, “Perbandingan Algoritma Svm Dan Nbc Dalam Analisa Sentimen Pilkada Pada Twitter,” pp. 169–179, 2021.
S. A. Sutresno, “Analisis Sentimen Masyarakat Indonesia Terhadap Dampak Penurunan Global Sebagai Akibat Resesi di Twitter,” vol. 4, no. 4, pp. 1959–1966, 2023, doi: 10.47065/bits.v4i4.3149.
R. Karisma, S. Lestanti, and M. T. Chulkamdi, “Aplikasi Klasifikasi Sentimen Pada Ulasan Smartphone Di Situs Jual Beli Online Berbasis Web Menggunakan Naive Bayes Dengan Tf-Idf,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 1, pp. 31–37, 2021.
D. F. Zhafira, B. Rahayudi, and I. Indriati, “Analisis Sentimen Kebijakan Kampus Merdeka Menggunakan Naive Bayes dan Pembobotan TF-IDF Berdasarkan Komentar pada Youtube,” J. Sist. Informasi, Teknol. Informasi, dan Edukasi Sist. Inf., vol. 2, no. 1, pp. 55–63, 2021.
C. F. Hasri and D. Alita, “Penerapan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Analisis Sentimen Terhadap Dampak Virus Corona Di Twitter,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 3, no. 2, pp. 145–160, 2022.
H. Malik, E. M. Shakshuki, and A. U. H. Yasar, “Approximating Viewership of Streaming T.V Programs Using Social Media Sentiment Analysis,” Procedia Comput. Sci., vol. 198, no. 2021, pp. 94–101, 2021.
E. Hari, A. Prastyo, P. Studi, and R. Wiratsongko, “Implementasi Teknik Web Scraping Pada Situs Berita Menggunakan Metode Supervised learning Implementasi Web Scraping Pada Situs Berita Menggunakan Metode Supervised learning IGL Putra Eka Prismana.”
W. P. Anggraini, M. S. Utami, J. M. Berlianty, and E. Sellya, “Klasifikasi Sentimen Masyarakat Terhadap Kebijakan Kartu Prakerja di Indonesia,” vol. 13, no. 4, 2021.
A. C. Khotimah and E. Utami, “Perbandingan Algoritma Naïve Bayes Classifier, K-Nearest Neighbor Dan Support Vector Machine Dalam Klasifikasi Karakter Individu Pada Akun Twitter,” vol. 3, no. 3, pp. 673–680, 2022.
R. Indransyah, “Klasifikasi Sentimen Pergelaran Motogp Di Indonesia Menggunakan Algoritma Correlated Naïve Bayes Clasifier,” pp. 60–66, 2022.
A. Syahputri, M. Zarlis, and Suherman, “Analisis Klasifikasi Sentimen Mahasiswa Terhadap Strategi Pembelajaran Online Pada Media Sosial Twitter Menerapkan Metode Naïve Bayes,” Konf. Nas. Teknol. Inform. dan Komput., vol. 4, pp. 18–21, 2020.
H. S. Ginting, K. M. Lhaksmana, and D. T. Murdiansyah, “Klasifikasi Sentimen Terhadap Bakal Calon Gubernur Jawa Barat 2018 di Twitter Menggunakan Naive Bayes,” vol. 5, no. 1, pp. 1793–1802, 2018.
S. Lestari and S. Saepudin, “Analisis Sentimen Vaksin Sinovac Pada Twitter Menggunakan Algoritma Naïve Bayes,” 2021.
M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” vol. 10, pp. 71–76, 2020.
W. Widyatama, “Klasifikasi Komentar Sentimen Pada Celebrity Endorsement Online Shop di Instagram Menggunakan Metode Naive Bayes Classifier,” Tugas Akhir UIN, 2021.
T. S. Az-Zahra, “Analisis sentimen terhadap belajar daring menggunakan optimasi naive bayes classifier dengan adaboost,” Tazkia Shabrina, 2021.
M. D. Saputra, “Klasifikasi Sentimen Pada Video Channel Youtube Raditya Dika Menggunakan Metode Naive Bayes Classifier,” Tugas Akhir UIN, 2021.
M. A. Djamaludin, A. Triayudi, and E. Mardiani, “Analisis Sentimen Tweet KRI Nanggala 402 di Twitter menggunakan Metode Naïve Bayes Classifier,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 2, pp. 161–166, 2022.
Y. Harfian, “Klasifikasi Sentimen Aplikasi Dompet Digital Dana Pada Komentar Di Instagram Menggunakan Naive Bayes Classifier,” Tugas Akhir UIN, 2021.
K. Azmi, “Klasifikasi Sentimen Terhadap Video Dakwah Ulama Islam Berdasarkan Komentar Di Youtube Menggunakan Naïve Bayes Classifier,” J. Ekon. Vol. 18, Nomor 1 Maret201, vol. 2, no. 1, pp. 41–49, 2020.
A. Herdhianto, Sentiment Analysis Menggunakan Naïve Bayes Classifier (NBC) Pada Tweet Tentang Zakat. 2020.
A. Rachmat C and Y. Lukito, “Klasifikasi Sentimen Komentar Politik dari Facebook Page Menggunakan Naive Bayes,” J. Inform. dan Sist. Inf. Univ. Ciputra, vol. 02, no. 02, pp. 26–34, 2016.
J. Ramsingh and V. Bhuvaneswari, “An efficient Map Reduce-Based Hybrid NBC-TFIDF algorithm to mine the public sentiment on diabetes mellitus – A big data approach,” J. King Saud Univ. - Comput. Inf. Sci., vol. 33, no. 8, pp. 1018–1029, 2021.
M. H. Asnawi, I. Firmansyah, R. Novian, and R. S. Pontoh, “Perbandingan Algoritma Naïve Bayes , K-NN , dan SVM dalam Pengklasifikasian Sentimen Media Sosial,” 2021.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Sentimen Masyarakat di Twitter terhadap Ganjar Pranowo dengan Metode Naïve Bayes Classifier
Pages: 134−143
Copyright (c) 2023 Sinta Wahyuni Ritonga, Yusra ., Muhammad Fikry, Eka Pandu Cynthia

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).





















