Klasifikasi Sentimen Terhadap Pengangkatan Kaesang Sebagai Ketua Umum Partai PSI Menggunakan Metode Support Vector Machine


  • Safrizal .Safrizal Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Surya Agustian * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Alwis Nazir Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Yusra Yusra Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Kaesang Pangarep; SVM; FastText; Sentiment Classification; Social Media

Abstract

The appointment of Kaesang Pangarep as the Chairman of the Indonesian Solidarity Party (PSI) has sparked various responses on social media, particularly on Twitter. This research aims to classify public sentiment regarding the appointment using the Support Vector Machine (SVM) algorithm with FastText feature representation. The data used for classification involves a small training dataset. The text preprocessing process includes cleaning, case folding, tokenizing, normalization, stopword removal, and stemming. FastText word embedding is used to convert words into vectors, and an SVM model with Grid Search is used for parameter tuning to obtain the optimal model. The use of external datasets to expand the initially limited training dataset enhances data representation and improves the model's performance in sentiment classification. The Covid dataset was expanded by adding 100, 200, and 300 tweets for each negative, positive, and neutral label. From the experiments conducted, the best accuracy on the test data was found in experiment ID C2 with an F1-Score of 53.59% and an accuracy of 62.73%. In experiment ID C3 with the same dataset, the F1-Score was 50.46% and the accuracy was 60.46%. Finally, in experiment ID C7 with the same dataset, the F1-Score was 47.19% and the accuracy was 53.09%.

Downloads

Download data is not yet available.

References

“Tentang PSI - Partai Solidaritas Indonesia.” Accessed: Apr. 09, 2024. [Online]. Available: https://psi.id/tentang-psi/

N. Muhamad, “Kaesang Jadi Ketum PSI, Hal Baik atau Dinasti Politik? Ini Menurut Publik,” databoks.com. Accessed: Apr. 05, 2024. [Online]. Available: https://databoks.katadata.co.id/datapublish/2023/10/20/kaesang-jadi-ketum-psi-hal-baik-atau-dinasti-politik-ini-menurut-publik

A. N. Yahya, “Pro dan Kontra Kaesang Pangarep Jadi Ketum PSI,” Kompas.com. Accessed: Apr. 05, 2024. [Online]. Available: https://nasional.kompas.com/read/2023/09/26/16000031/pro-dan-kontra-kaesang-pangarep-jadi-ketum-psi

S. A. Mukti M Kusairi, “SVM Method with FastText Representation Feature for Classification of Twitter Sentiments Regarding the Covid-19 Vaccination Program,” Jurnal Teknologi Informasi dan Komunikasi, 2022, doi: https://doi.org/10.31849/digitalzone.v13i2.11531.

M. Sahbuddin and S. Agustian, “Support Vector Machine Method with Word2vec for Covid-19 Vaccine Sentiment Classification on Twitter,” JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, vol. 6, no. 1, pp. 288–297, Jul. 2022, doi: 10.31289/jite.v6i1.7534.

A. M. Rahat, A. Kahir, and A. K. M. Masum, “Comparison of Naive Bayes and SVM Algorithm based on Sentiment Analysis Using Review Dataset,” 2019.

M. D. H. Jasy, S. Al Hasan, M. I. K. Sagor, A. Noman, and J. M. Ji, “A Performance Evaluation of Sentiment Classification Applying SVM, KNN, and Naive Bayes,” in Proceedings - 2021 International Conference on Computing, Networking, Telecommunications and Engineering Sciences Applications, CoNTESA 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 56–60. doi: 10.1109/CoNTESA52813.2021.9657115.

A. Damayunita, R. S. Fuadi, and C. Juliane, “Comparative Analysis of Naive Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) Algorithms for Classification of Heart Disease Patients,” Jurnal Online Informatika, vol. 7, no. 2, pp. 219–225, Dec. 2022, doi: 10.15575/join.v7i2.919.

K. Munawaroh, “Performance Comparison of SVM, Naïve Bayes, and KNN Algorithms for Analysis of Public Opinion Sentiment Against COVID-19 Vaccination on Twitter,” Journal of Advances in Information Systems and Technology, vol. 4, no. 2, 2022

R. Yunita and M. Kamayani, “Perbandingan Algoritma SVM Dan Naïve Bayes Pada Analisis Sentimen Kebijakan Penghapusan Kewajiban Skripsi,” Indonesian Journal of Computer Science, 2023.

A. Nurdin, B. Anggo, S. Aji, A. Bustamin, and Z. Abidin, “PERBANDINGAN KINERJA WORD EMBEDDING WORD2VEC, GLOVE, DAN FASTTEXT PADA KLASIFIKASI TEKS,” Jurnal TEKNOKOMPAK, vol. 14, no. 2, p. 74, 2020.

S. Agustian, R. Abdillah, and M. Irfansyah, “Arah baru penelitian klasifikasi teks: Memaksimalkan Kinerja Klasifikasi Sentimen dari Data Terbatas,” MALCOM (Indonesia Jurnal of Machine Learning and Computer), vol. 4, no. 3, Jul. 2024.

M. Ihsan, Benny Sukma Negara, and Surya Agustian, “LSTM (Long Short Term Memory) for Sentiment COVID-19 Vaccine Classification on Twitter,” Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, vol. 13, no. 1, pp. 79–89, May 2022, doi: 10.31849/digitalzone.v13i1.9950.

M. Sahbuddin and S. Agustian, “Support Vector Machine Method with Word2vec for Covid-19 Vaccine Sentiment Classification on Twitter,” JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, vol. 6, no. 1, pp. 288–297, Jul. 2022, doi: 10.31289/jite.v6i1.7534.

Ash Shiddicky and Surya Agustian, “Analisis Sentimen Masyarakat Terhadap Kebijakan Vaksinasi Covid-19 pada Media Sosial Twitter menggunakan Metode Logistic Regression,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 3, no. 2, pp. 99–106, Aug. 2022, doi: 10.37859/coscitech.v3i2.3836.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word Vectors with Subword Information,” Jul. 2016, [Online]. Available: http://arxiv.org/abs/1607.04606

M. D. Rhman, A. Djunaidy, and F. Mahananto, “Penerapan Weighted Word Embedding pada Pengklasifikasian Teks Berbasis Recurrent Neural Network untuk Layanan Pengaduan Perusahaan Transportasi,” 2021.

E. Bartz, T. Bartz-Beielstein, M. Zaefferer, and O. Mersmann, “Hyperparameter Tuning for Machine and Deep Learning with R A Practical Guide.” 2023

M. Fajri and A. Primajaya, “Komparasi Teknik Hyperparameter Optimization pada SVM untuk Permasalahan Klasifikasi dengan Menggunakan Grid Search dan Random Search,” 2023. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

A. Toha, P. Purwono, and W. Gata, “Model Prediksi Kualitas Udara dengan Support Vector Machines dengan Optimasi Hyperparameter GridSearch CV,” Buletin Ilmiah Sarjana Teknik Elektro, vol. 4, no. 1, pp. 12–21, May 2022, doi: 10.12928/biste.v4i1.6079.

A. A. Soebroto, “Buku Ajar AI, Machine Learning & Deep Learning,” 2019. [Online]. Available: https://www.researchgate.net/publication/348003841

F. Putrawansyah, “Penerapan Metode Support Vector Machine Terhadap Klasifikasi Jenis Jambu Biji,” JIKO (Jurnal Informatika dan Komputer), vol. 8, no. 1, p. 193, Feb. 2024, doi: 10.26798/jiko.v8i1.988.

H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, Feb. 2021, doi: 10.34148/teknika.v10i1.311.

B. Darma Darma Setiawan and Y. Arum Sari, “Klasifikasi Pola Sidik Bibir Untuk Menentukan Jenis Kelamin Manusia Dengan Metode Gray Level Co-Occurrence Matrix Dan Support Vector Machine,” 2019. [Online]. Available: http://j-ptiik.ub.ac.id

M. Mustasaruddin, E. Budianita, M. Fikry, and F. Yanto, “Klasifikasi Sentiment Review Aplikasi MyPertamina Menggunakan Word Embedding FastText dan SVM (Support Vector Machine),” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 3, p. 526, Mar. 2023, doi: 10.30865/json.v4i3.5695.

S. Azhar, M. Fikry, S. Agustian, and I. Afrianty, “Klasifikasi Sentimen Masyarakat di Twitter Terhadap Ganjar Pranowo dengan Metode Support Vector Machine,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 3, pp. 1660–1667, 2023, doi: 10.30865/klik.v4i3.1537.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Sentimen Terhadap Pengangkatan Kaesang Sebagai Ketua Umum Partai PSI Menggunakan Metode Support Vector Machine

Dimensions Badge
Article History
Submitted: 2024-06-13
Published: 2024-06-26
Abstract View: 543 times
PDF Download: 354 times
How to Cite
.Safrizal, S., Agustian, S., Nazir, A., & Yusra, Y. (2024). Klasifikasi Sentimen Terhadap Pengangkatan Kaesang Sebagai Ketua Umum Partai PSI Menggunakan Metode Support Vector Machine. Building of Informatics, Technology and Science (BITS), 6(1), 216−225. https://doi.org/10.47065/bits.v6i1.5340
Issue
Section
Articles

Most read articles by the same author(s)

1 2 3 > >>