Klasifikasi Sentimen Masyarakat Di Twitter Terhadap Prabowo Subianto Sebagai Bakal Calon Presiden 2024 Menggunakan M-KNN


  • Abdul Halim * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Yusra Yusra Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Muhammad Fikry Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Muhammad Irsyad Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Elvia Budianita Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Classification.; Modified k-Nearest Neighbor; Prabowo Subianto; Sentiment; Twitter; Presidential Candidate

Abstract

Presidential elections are held every five years and each presidential candidate will get support from several political parties to run for candidacy in the election. In a multi-party system, the number of parties participating in the election is very large, so that the perspectives of voters on political actors, including presidential candidates who will advance in the 2024 elections, are varied. The survey results from Polling Indonesia (SPIN) conducted from 7 to 16 October 2022 show that Prabowo Subianto has the highest electability with a score of 31.6%, based on a national leadership survey. In this study, a test was carried out by classifying tweet data from the public collected on the Twitter application from January to December 2022 using the Modified k-Nearest Neighbor method to analyze public sentiment regarding the upcoming election. Data collected as many as 2,100 data with positive and negative categories related to "Presidential Candidate" and "Prabowo Subianto" and the implementation of the Modified k-Nearest Neighbor classification was carried out using Google Colab. Based on the results of the confusion matrix test from the Modified k-Nearest Neighbor classification with three comparisons made (ie comparisons 70%:30%, 80%:20% dan 90%:10%) and using K=3, 5, 7, 9, 11 when testing a comparison of 90:10 at K=3 the highest accuracy results were obtained with a value of 93,3%.

Downloads

Download data is not yet available.

References

B. Dimas, “APJII: Pengguna Internet Indonesia Tembus 210 Juta pada 2022,” 2022. https://dataindonesia.id/digital/detail/apjii-pengguna-internet-indonesia-tembus-210-juta-pada-2022 (accessed Dec. 04, 2022).

M. M. Ivan, “Pengguna Media Sosial di Indonesia Capai 191 Juta pada 2022,” 2022. https://dataindonesia.id/digital/detail/pengguna-media-sosial-di-indonesia-capai-191-juta-pada-2022 (accessed Dec. 04, 2022).

A. R. Monavia, “Pengguna Twitter di Indonesia Capai 18,45 Juta pada 2022,” 2022. https://dataindonesia.id/digital/detail/pengguna-twitter-di-indonesia-capai-1845-juta-pada-2022 (accessed Dec. 05, 2022).

S. K. Melalusa, “Survei SPIN: Prabowo tempati elektabilitas tertinggi capres 2024 - ANTARA News,” 2022. https://www.antaranews.com/berita/3200145/survei-spin-prabowo-tempati-elektabilitas-tertinggi-capres-2024 (accessed Dec. 04, 2022).

M. D. Agustinus, “Cek Jumlah Follower Twitter Sejumlah Tokoh Publik yang Berpotensi Jadi Capres 2024 - Tekno Liputan6.com,” 2022. https://www.liputan6.com/tekno/read/5007928/cek-jumlah-follower-twitter-sejumlah-tokoh-publik-yang-berpotensi-jadi-capres-2024 (accessed Dec. 05, 2022).

M. I. Aditama, R. Irfan Pratama, K. Hafizzana, U. Wiwaha, and N. A. Rakhmawati, “Analisis Klasifikasi Sentimen Pengguna Media Sosial Twitter Terhadap Pengadaan Vaksin COVID-19,” JIEET (Journal Inf. Eng. Educ. Technol., vol. 4, no. 2, pp. 90–92, Dec. 2020, doi: 10.26740/JIEET.V4N2.P90-92.

A. Fairuzatul. Jannah; Ginanjar. Abdurrahman; Qurrota, “Jurnal Smart Teknologi Analisa Klasifikasi Data Kualitas Kadar Karat Emas Menggunakan Metode Modified Analysis Of Classification Of Gold Carat Quality Data Using The Modified K-Nearest Neighbor ( MK-NN ) Method Jurnal Smart Teknologi,” vol. 3, no. 5, pp. 511–519, 2022.

M. T. Larasati, Imaning D; Supianto, Ahmad A; Furqon, “Prediksi Kelulusan Mahasiswa Berdasarkan Kinerja Akademik Menggunakan Metode Modified K-Nearest Neighbor (MK-NN) | Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer,” 2019. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5284 (accessed Dec. 05, 2022).

M. Anas Ziaulhaq, “Analisis Sentimen Data Twitter Tentang Pembelajaran Online di Indonesia Akibat Covid-19 Dengan Menggunakan Metode Modified K-Nearest Neighbor - Repository Tugas Akhir,” 2022. http://repota.jti.polinema.ac.id/805/ (accessed Dec. 05, 2022).

L. F. Narulita and D. H. Sulistyawati, “Pengumpulan Data Twitter Tentang Covid-19 di Indonesia untuk Menghitung Tingkat Engagement Pengguna,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 3, p. 565, 2021, doi: 10.25126/jtiik.2021834626.

G. F. Grandis, Y. Arumsari, and Indriati, “Seleksi Fitur Gain Ratio pada Analisis Sentimen Kebijakan Pemerintah Mengenai Pembelajaran Jarak Jauh dengan K-Nearest Neighbor,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 8, pp. 3507–3514, 2021.

R. Z. Supono and S. Muhammad Azis, “Perbandingan Metode TF-ABS dan TF-IDF Pada Klasifikasi Teks Helpdesk Menggunakan K-Nearest Neighbor,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 5, pp. 911–918, 2021, doi: 10.29207/resti.v5i5.3403.

Y. H. Kristian, K. R. Prilianti, and P. L. Tirma, “Implementasi Text Mining Untuk Analisis Tempat Wisata Di Indonesia,” J. SimanteC, vol. 7, no. 2, pp. 73–82, 2019.

W. A. Istiqhfarani, I. Cholissodin, and F. A. Bachtiar, “Klasifikasi Penyakit Dental caries menggunakan Algoritme Modified K- Nearest Neighbor,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 5, pp. 1499–1506, 2020, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/7265/3498

A. I. Saputra, H. Oktavianto, H. Azizah, and A. Faruq, “Penerapan Algoritma Modified K-Nearest Neighbour (MKNN) pada Klasifikasi Masa Studi Mahasiswa Teknik Informatika,” J. Smart Teknol., vol. 3, no. 1, pp. 2774–1702, 2021.

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” J. Teknoinfo, vol. 14, no. 2, p. 115, 2020, doi: 10.33365/jti.v14i2.679.

Y. A. V. Gunawan, S. N. Agus, M. M. Ida Bagus, W. I. Made, N. A. C. P. I Gusti, and A. G. A. K. I Gusti, “Analisis Sentimen Ulasan Aplikasi Transportasi Online Menggunakan Multinomial Naïve Bayes dan Query Expansion Ranking,” JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 11, no. 1, p. 121, 2022, doi: 10.24843/jlk.2022.v11.i01.p13.

I. Najiyah and I. Hariyanti, “Sentimen Analisis Covid-19 Dengan Metode Probabilistic Neural Network Dan Tf-Idf,” J. Responsif Ris. Sains dan Inform., vol. 3, no. 1, pp. 100–111, 2021, doi: 10.51977/jti.v3i1.488.

S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” J. Media Inform. Budidarma, vol. 5, no. 2, p. 406, 2021, doi: 10.30865/mib.v5i2.2835.

K. Saputri, H. Faizah, and C. Charlina, “Negasi dalam Tuturan Peserta Diskusi Indonesia Lawyers Club,” SASTRANESIA J. Progr. Stud. Pendidik. Bhs. dan Sastra Indones., vol. 9, no. 1, p. 29, 2021, doi: 10.32682/sastranesia.v9i1.1788.

A. Santosa, I. Purnamasari, and R. Mayasari, “Pengaruh Stopword Removal dan Stemming Terhadap Performa Klasifikasi Teks Komentar Kebijakan New Normal Menggunakan Algoritma,” J. Sains Komput. Inform., vol. 6, no. 1, pp. 81–93, 2022.

I. Z. Simanjuntak, “Analisa Kombinasi Algoritma Stemming Dan Algoritma Soundex Dalam Pencarian Kata Bahasa Indonesia,” Inf. dan Teknol. Ilm., vol. 10, no. 1, pp. 24–30, 2022, [Online]. Available: http://ejurnal.stmik-budidarma.ac.id/index.php/inti/article/view/5040

R. H. Faturrahman, W. Astuti, and M. D. Purbolaksono, “Klasifikasi Sentimen Ulasan Film Menggunakan Support Vector Machine , Information Gain , dan N-Grams,” e-Proceeding Eng., vol. 9, no. 3, pp. 1928–1933, 2022.

H. B. Tambunan and T. W. D. Hapsari, “Analisis Opini Pengguna Aplikasi New PLN Mobile Menggunakan Text Mining,” Petir, vol. 15, no. 1, pp. 121–134, 2021, doi: 10.33322/petir.v15i1.1352.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Sentimen Masyarakat Di Twitter Terhadap Prabowo Subianto Sebagai Bakal Calon Presiden 2024 Menggunakan M-KNN

Dimensions Badge
Article History
Submitted: 2023-08-09
Published: 2023-10-26
Abstract View: 670 times
PDF Download: 511 times
How to Cite
Halim, A., Yusra, Y., Fikry, M., Irsyad, M., & Budianita, E. (2023). Klasifikasi Sentimen Masyarakat Di Twitter Terhadap Prabowo Subianto Sebagai Bakal Calon Presiden 2024 Menggunakan M-KNN. Journal of Information System Research (JOSH), 5(1), 202-212. https://doi.org/10.47065/josh.v5i1.4054
Section
Articles

Most read articles by the same author(s)

1 2 > >>