Pengaruh Penyeimbangan Data Pada Klasifikasi Terjemahan Al-Quran Dengan Metode Naïve Bayes dan Long Short Term Memory
Abstract
The Al Qur'an is a holy book of Muslims which is a guide to life for all mankind. Studying and understanding the translation of the Al-Quran is not easy, one way that can be done is to classify the translation of Al-Quran verses into existing topics. This research uses Naïve Bayes and LSTM methods in the classification process. The data used comes from translation data of the Al-Quran in Indonesian which has been labeled based on multi-class classification. One of the main problems faced is data imbalance. To overcome this problem, data balancing, text preprocessing, feature construction and feature extraction processes were carried out using the Bag of Words (BoW) and TF.IDF techniques. The research results indicate that the most optimal Naïve Bayes model achieved an average accuracy of 55.39% on test data from juz 30, 61.59% on test data from juz 10-20, and 59.53% on test data from juz 25-28. Meanwhile, the most optimal LSTM model yielded an accuracy of 58.02% on test data from juz 30, 59.64% on test data from juz 10-20, and 58.59% on test data from juz 25-28. The main aim of this research is to improve classification performance and compare the accuracy between naïve Bayes and lstm.
Downloads
References
S. Hidayatullah, “Classification of Al-Qur’an Arabic Verses Used Naive Bayes,” Jurnal Mantik, vol. 6, no. 1, pp. 639–648, 2022.
S. Th. I. M. A. J. Muhammad Yasir, Studi Al-Qur’an. 2016.
R. Ananda Pane and M. Syahrul Mubarok, “Klasifikasi Multi-Label Pada Topik Ayat Al-Quran Terjemahan Bahasa Inggris Menggunakan Multinomial Naive Bayes A Multi-Label Classification On Topics Of Quranic Verses In English Translation Using Multinomial Naive Bayes,” e-Proceeding of Engineering, vol. 5, no. 1, pp. 1551–1555, 2018.
E. Supriyati and M. Iqbal, “Pengukuran Similarity Tema Pada Juz 30 Al Qur’an Menggunakan Teks Klasifikasi,” Jurnal SIMETRIS, vol. 9, no. 1, pp. 361–370, 2018, [Online]. Available: https://translate.google.co.id/
M. R. Choirulfikri, K. M. Lhaksamana, and S. Al Faraby, “A Multi-Label Classification of Al-Quran Verses Using Ensemble Method and Naïve Bayes,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 4, pp. 473–479, Mar. 2022, doi: 10.47065/bits.v3i4.1287.
Y. Astari and S. Wahib Rozaqi, “Analisis Sentimen Multi-Class pada Sosial Media menggunakan metode Long Short-Term Memory (LSTM),” JLK, vol. 4, no. 1, pp. 8–12, 2021.
A. Rahman et al., “Analisis Perbandingan Algoritma LSTM dan Naive Bayes untuk Analisis Sentimen,” JEPIN (Jurnal Edukasi dan Penelitian Informatika) , vol. 8, no. 2, pp. 299–303, 2022.
N. S. Wardani, A. Prahutama, and P. Kartikasari, “Analisis Sentimen Pemindahan Ibu Kota Negara Dengan Klasifikasi Naïve Bayes Untuk Model Bernoulli Dan Multinomial,” Jurnal Gaussian, vol. 9, no. 3, pp. 237–246, 2020, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/
M. Muslimin and V. Lusiana, “Analisis Sentimen Terhadap Kenaikan Harga Bahan Pokok Menggunakan Metode Naive Bayes Classifier,” Jurnal Media Informatika Budidarma, vol. 7, no. 3, pp. 1200–1209, 2023, doi: 10.30865/mib.v7i3.6418.
K. A. Nugraha, “Analisis Sentimen Berbasis Emoticon pada Komentar Instagram Bahasa Indonesia Menggunakan Naïve Bayes,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 7, no. 3, pp. 715–721, Dec. 2021, doi: 10.28932/jutisi.v7i3.4094.
S. W. Ritonga, . Y., M. Fikry, and E. P. Cynthia, “Klasifikasi Sentimen Masyarakat di Twitter terhadap Ganjar Pranowo dengan Metode Naïve Bayes Classifier,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 1, pp. 134–143, Jun. 2023, doi: 10.47065/bits.v5i1.3535.
M. Suhendri and Y. Afrilia, “Klasifikasi Karya Ilmiah (Tugas Akhir) Mahasiswa Menggunakan Metode Naive Bayes Classifier (Nbc),” Sistemasi: Jurnal Sistem Informasi , vol. 10, no. 2, pp. 268–279, May 2021, [Online]. Available: http://sistemasi.ftik.unisi.ac.id
M. Ihsan, Benny Sukma Negara, and Surya Agustian, “LSTM (Long Short Term Memory) for Sentiment COVID-19 Vaccine Classification on Twitter,” Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, vol. 13, no. 1, pp. 79–89, May 2022, doi: 10.31849/digitalzone.v13i1.9950.
B. Arief, H. Kholifatullah, and A. Prihanto, “Penerapan Metode Long Short Term Memory Untuk Klasifikasi Pada Hate Speech,” Journal of Informatics and Computer Science, vol. 04, 2023.
F. N. Fajri and S. Syaiful, “Klasifikasi Nama Paket Pengadaan Menggunakan Long Short-Term Memory (LSTM) Pada Data Pengadaan,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 3, pp. 1625–1633, Dec. 2022, doi: 10.47065/bits.v4i3.2635.
W. Widayat, “Analisis Sentimen Movie Review menggunakan Word2Vec dan metode LSTM Deep Learning,” Jurnal Media Informatika Budidarma, vol. 5, no. 3, pp. 1018–1026, Jul. 2021, doi: 10.30865/mib.v5i3.3111.
P. A. Nabila, S. Soim, and A. S. Handayani, “Klasifikasi Kondisi Kendaraan Berpotensi Kecelakaan Berbasis Android Menggunakan Long Short Term Memory,” Jurnal Media Informatika Budidarma, vol. 8, no. 1, pp. 30–40, Jan. 2024, doi: 10.30865/mib.v8i1.7005.
M. Alshammeri, E. Atwell, and M. Alsalka, “Classifying Verses of the Quran using Doc2vec,” in the 18th International Conference on Natural Language Processing, 2021, pp. 284–288.
“Al-Quran yang mulia - Quran.com.” Accessed: Feb. 14, 2024. [Online]. Available: https://quran.com/id
D. Jacarria Pangestu and A. Kodar, “Implementasi Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Terhadap Pelayanan Perusahaan Otobus Menggunakan Data Facebook (Studi Kasus: Grup Facebook Murni Jaya Lovers),” Jurnal Informatika: Jurnal pengembangan IT (JPIT), vol. 7, no. 3, pp. 156–160, 2022.
F. Hasibuan, W. Priatna, and T. Sri Lestari, “Analisis Sentimen Terhadap Kementrian Perdagangan Pada Sosial Media Twitter Menggunakan Metode Naïve Bayes Sentiment Analysis Of The Ministry Of Trade On Twitter Social Media Using Naïve Bayes Method,” Techno.COM, vol. 21, no. 4, pp. 741–752, 2022.
U. Kurniasih and A. T. Suseno, “Analisis Sentimen Terhadap Bantuan Subsidi Upah (BSU) pada Kenaikan Harga Bahan Bakar Minyak (BBM),” Jurnal Media Informatika Budidarma, vol. 6, no. 4, pp. 2335–2340, Oct. 2022, doi: 10.30865/mib.v6i4.4958.
N. Satya Marga, A. Rahman Isnain, and D. Alita, “Sentimen Analisis Tentang Kebijakan Pemerintah Terhadap Kasus Corona Menggunakan Metode Naïve Bayes,” Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 453, no. 4, pp. 453–463, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/informatika
M. Sahbuddin and S. Agustian, “Support Vector Machine Method with Word2vec for Covid-19 Vaccine Sentiment Classification on Twitter,” Journal Of Informatics And Telecommunication Engineering, vol. 6, no. 1, pp. 288–297, Jul. 2022, doi: 10.31289/jite.v6i1.7534.
I. H. Hasibuan, E. Budianita, S. Agustian, and Pizaini, “Klasifikasi Sentimen Komentar Youtube Tentang Pembatalan Indonesia Sebagai Tuan Rumah Piala Dunia U 20 Menggunakan Algoritma Naïve Bayes Classifer Tugas Akhir,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 5, no. 2, pp. 249–257, 2023, doi: 10.30865/json.v5i2.7096.
Ibnu Daqiqil Id, Machine Learning. 2021.
J. Nurvania and K. Muslim Lhaksamana, “Analisis Sentimen Pada Ulasan di TripAdvisor Menggunakan Metode Long Short-Term Memory (LSTM),” e-Proceeding of Engineering, vol. 8, no. 4, pp. 4124–4134, 2021.
M. Fauzan, H. Junaedi, and E. Setyati, “Klasifikasi Al-Qur’an Terjemahan Bahasa Indonesia Dengan Menggunakan Algoritma Support Vector Machine (SVM),” KONVERGENSI, vol. 18, no. 2, pp. 42–49, 2022.
N. Widiastuti, A. Hermawan, and D. Avianto, “Implementasi Metode Naïve Bayes Untuk Klasifikasi Data Blogger,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 8, no. 3, pp. 985–994, Aug. 2023, doi: 10.29100/jipi.v8i3.3713.
Y. Romadhoni, K. Fahmi, and H. Holle, “Analisis Sentimen Terhadap PERMENDIKBUD No.30 pada Media Sosial Twitter Menggunakan Metode Naive Bayes dan LSTM,” Jurnal Informatika: Jurnal pengembangan IT (JPIT), vol. 7, no. 2, pp. 118–124, 2022.
M. N. Farid and S. Ferdiana Kusuma, “Analisis Sentimen pada Media Sosial Twitter Terhadap Kebijakan Pemberlakuan Pembatasan Kegiatan Masyarakat Berbasis Deep Learning,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 8, no. 1, pp. 44–49, 2022.
S. A. Afri Naldi, “Klasifikasi Sentimen Vaksin Covid-19 Menggunakan KNN Berdasarkan Word Embeddings Fasttext pada Twitter,” ZONAsi: Jurnal Sistem Informasi, vol. 5, no. 2, pp. 323–333, May 2023.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Pengaruh Penyeimbangan Data Pada Klasifikasi Terjemahan Al-Quran Dengan Metode Naïve Bayes dan Long Short Term Memory
Pages: 626-635
Copyright (c) 2024 Sulistia Ningsih, Nazruddin Safaat, Surya Agustian, Yusra Yusra, Eka Pandu Cynthia

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).