Perbandingan Performa Klasifikasi Terjemahan Al-Qur'an Menggunakan Metode Random Forest dan Long Short Term Memory


  • Dhea Putri Aftari Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Nazruddin Safaat * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Surya Agustian Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Yusra Yusra Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Iis Afrianty Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Accuracy; Classification; Quran Translation; Parameter Tuning; Preprocessing; Long Short Term Memory; Random Forest

Abstract

This study focuses on the use of the Qur'an as the primary source of Islamic teachings, aiming to facilitate Muslims' understanding of its content. To achieve this, the classification of translated Qur'anic verses was conducted. Two methods that are rarely used for Qur'anic translation data are Random Forest (RF) and Long Short Term Memory (LSTM) due to their ability to process large and complex data. The data used in this study are translations of the Qur'an that have been classified into 15 topics by previous research, but this study will only focus on 6 topics. The objective of this research is to compare the performance of RF and LSTM in classifying Qur'anic translations into 6 different categories. The results show that in the preaching category, LSTM consistently outperformed RF, with an F1-Score of 57.3% and an accuracy of 96.8%, whereas RF achieved an F1-Score of 49.4% and an accuracy of 97.5%. These findings indicate that LSTM has better performance, especially with proper preprocessing, optimal parameter tuning, and balanced data. This study provides important insights into the development of classification models for Qur'anic translation texts, highlighting the importance of proper preprocessing and parameter tuning.

Downloads

Download data is not yet available.

References

Kemenag, ‘Menjadi Muslim, Menjadi Indonesia (Kilas Balik Indonesia Menjadi Bangsa Muslim Terbesar)’, https://kemenag.go.id. Accessed: Nov. 28, 2023. [Online]. Available: https://kemenag.go.id/opini/menjadi-muslim-menjadi-indonesia-kilas-balik-indonesia-menjadi-bangsa-muslim-terbesar-03w0yt

M. A. S. Nuruddaroini and Muh. H. Zubaidillah, ‘Penghafal Alquran Perspektif Sikap Kognitif’, AM, vol. 1, no. 2, p. 112, Feb. 2023, doi: 10.35931/am.v1i2.1472.

M. Alshammeri, E. Atwell, and M. Alsalka, ‘Classifying Verses of the Quran using Doc2vec’, Proceedings of the 18th International Conference on Natural Language Processing, pp. 284–288, 2021.

R. A. Pane and M. S. Mubarok, ‘Klasifikasi Multi-Label Pada Topik Ayat Al-Quran Terjemahan Bahasa Inggris Menggunakan Multinomial Naive Bayes’, 2018.

R. A. Haristu and P. H. P. Rosa, ‘Penerapan Metode Random Forest untuk Prediksi Win Ratio Pemain Player Unknown Battleground’, MEANS, pp. 120–128, Oct. 2019, doi: 10.54367/means.v4i2.545.

O. R. Olaniran and M. A. A. Abdullah, ‘Bayesian weighted random forest for classification of high-dimensional genomics data’, Kuwait Journal of Science, vol. 50, no. 4, pp. 477–484, Oct. 2023, doi: 10.1016/j.kjs.2023.06.008.

A. Efendi, I. Iskandar, R. Kurniawan, and M. Affandes, ‘Klasifikasi Kebakaran Hutan Riau Menggunakan Random Forest dan Visualisasi Citra Sentinel-2’, vol. Vol 4, pp. 1602–1612, 2023, doi: 10.30865/klik.v4i3.1521.

I. Kurniawan, D. C. P. Buani, A. Abdussomad, W. Apriliah, and R. A. Saputra, ‘Implementasi Algoritma Random Forest Untuk Menentukan Penerima Bantuan Raskin’, JTIIK, vol. 10, no. 2, pp. 421–428, Apr. 2023, doi: 10.25126/jtiik.20231026225.

C. S. Arsya and M. Elsera, ‘Implementasi Random Forest Dalam Melakukan Klasifikasi Kata Sarkasme Pada Media Sosial Facebook’, Com, Engine, Sys, Sci, vol. 4, no. 1, pp. 216–223, Jul. 2023, doi: 10.46576/djtechno.v4i1.3361.

N. Widjiyati, ‘Implementasi Algoritme Random Forest Pada Klasifikasi Dataset Credit Approval’, J. Janitra Inform. Sis. Inf., vol. 1, no. 1, pp. 1–7, Apr. 2021, doi: 10.25008/janitra.v1i1.118.

B. R. Khalil, ‘Heart Failure Patients Are Classified Using The Random Forest And Naïve Bayes Algorithms’, Journal of Northeastern University, vol. 26, no. 03, 2023.

S. Devella, Y. Yohannes, and F. N. Rahmawati, ‘Implementasi Random Forest Untuk Klasifikasi Motif Songket Palembang Berdasarkan SIFT’, JATISI, vol. 7, no. 2, pp. 310–320, Aug. 2020, doi: 10.35957/jatisi.v7i2.289.

N. Husin, ‘Komparasi Algoritma Random Forest, Naïve Bayes, dan Bert Untuk Multi-Class Classification Pada Artikel Cable News Network (CNN)’, Infokom, vol. 7, no. 1, pp. 75–84, May 2023, doi: 10.55886/infokom.v7i1.608.

Z. Chang, Y. Zhang, and W. Chen, ‘Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform’, Energy, vol. 187, p. 115804, Nov. 2019, doi: 10.1016/j.energy.2019.07.134.

H. Wang and F. Li, ‘A text classification method based on LSTM and graph attention network’, Connection Science, vol. 34, no. 1, pp. 2466–2480, Dec. 2022, doi: 10.1080/09540091.2022.2128047.

P. F. Muhammad, R. Kusumaningrum, and A. Wibowo, ‘Sentiment Analysis Using Word2vec And Long Short-Term Memory (LSTM) For Indonesian Hotel Reviews’, Procedia Computer Science, vol. 179, pp. 728–735, 2021, doi: 10.1016/j.procs.2021.01.061.

M. Ihsan, Benny Sukma Negara, and Surya Agustian, ‘LSTM (Long Short Term Memory) for Sentiment COVID-19 Vaccine Classification on Twitter’, Digitalzone, vol. 13, no. 1, pp. 79–89, May 2022, doi: 10.31849/digitalzone.v13i1.9950.

G. Budiprasetyo, M. Hani’ah, and D. Z. Aflah, ‘Prediksi Harga Saham Syariah Menggunakan Algoritma Long Short-Term Memory (LSTM)’, TEKNOSI, vol. 8, no. 3, pp. 164–172, Jan. 2023, doi: 10.25077/TEKNOSI.v8i3.2022.164-172.

‘Al-Quran yang mulia’, Quran.com. Accessed: Feb. 13, 2024. [Online]. Available: https://quran.com/id

R. Ulgasesa, A. B. P. Negara, and T. Tursina, ‘Pengaruh Stemming Terhadap Performa Klasifikasi Sentimen Masyarakat Tentang Kebijakan New Normal’, justin, vol. 10, no. 3, p. 286, Sep. 2022, doi: 10.26418/justin.v10i3.53880.

A. I. Kadhim, ‘An Evaluation of Preprocessing Techniques for Text Classification’, International Journal of Computer Science and Information Security (IJCSIS), vol. Vol. 16, No. 6, no. 6, pp. 22–32, Jun. 2018.

R.-C. Chen, C. Dewi, S.-W. Huang, and R. E. Caraka, ‘Selecting Critical Features For Data Classification Based On Machine Learning Methods’, J Big Data, vol. 7, no. 1, p. 52, Dec. 2020, doi: 10.1186/s40537-020-00327-4.

T. Kam Ho, ‘Random Decision Forest’, in Proceedings of 3rd international conference on document analysis and recognition, IEEE, Aug. 1995, pp. 278–282.

A. Qayyum, S. Latif, and J. Qadir, ‘Quran Reciter Identification: A Deep Learning Approach’, in 2018 7th International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur: IEEE, Sep. 2018, pp. 492–497. doi: 10.1109/ICCCE.2018.8539336.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Performa Klasifikasi Terjemahan Al-Qur'an Menggunakan Metode Random Forest dan Long Short Term Memory

Dimensions Badge
Article History
Submitted: 2024-05-10
Published: 2024-05-30
Abstract View: 497 times
PDF Download: 388 times
Issue
Section
Articles