Klasifikasi Sentimen Masyarakat Terhadap Kaesang Pangarep pada Media Sosial Twitter/X Menggunakan MLP Classifier dengan Fitur FastText


  • Veci Cahyono Tarmizi Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Surya Agustian * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Okfalisa Okfalisa Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Pizaini Pizaini Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Sentiment Analysis; FastText; Kaesang Pangarep; Multi-Layer Perceptron; Twitter

Abstract

Social media has become a primary channel for the public to express their opinions and reactions toward various political developments in Indonesia. One of the prominent discussions revolves around Kaesang Pangarep’s appointment as the Chairman of the Indonesian Solidarity Party (PSI). This study aims to analyze and classify public sentiment regarding this issue by employing the Multi-Layer Perceptron (MLP) algorithm integrated with FastText-based text representation. The dataset was collected from Twitter using keywords such as “Kaesang PSI”, and was further expanded with additional data from general topics including Covid-19 and Open Topic, ensuring a balanced distribution across positive, neutral, and negative sentiment categories for a more comprehensive representation of public opinion. The model’s performance was evaluated through four metrics: accuracy, precision, recall, and F1 Score. The experimental results demonstrate that the MLP–FastText model achieved consecutive scores of 0. 5129 for F1 Score, 0. 6035 for accuracy, 0. 5319 for precision, and 0. 5996 for recall. These findings indicate that the combination of MLP and FastText effectively captures sentiment patterns within textual data, particularly in the context of unstructured and dynamic social media content, and performs well when enhanced with relevant external data augmentation strategies.

Downloads

Download data is not yet available.

References

Agustian, S., et al. (2024). New directions in text classification research: Maximizing the performance of sentiment classification from limited data. https://github.com/s4gustian/Small_DataSet_Sentiment_Classification

Agustian, S., Syah, M. I., Fatiara, N., & Abdillah, R. (2024). New directions in text classification research: Maximizing the performance of sentiment classification from limited data. arXiv. https://arxiv.org/abs/2407.05627

Ali Kandhro, I., Chhajro, M. A., Kumar, K., Lashari, H. N., & Khan, U. (2019). Student feedback sentiment analysis model using various machine learning schemes: A review. Indian Journal of Science and Technology, 14(12), 1–9. https://doi.org/10.17485/ijst/2019/v12i14/143243

Alnuaim, A. A., et al. (2022). Human-computer interaction for recognizing speech emotions using multilayer perceptron classifier. Journal of Healthcare Engineering, 2022, 1–12. https://doi.org/10.1155/2022/6005446

Andika, L. A., Azizah, P. A. N., & Respatiwulan, R. (2019). Analisis sentimen masyarakat terhadap hasil quick count pemilihan presiden Indonesia 2019 pada media sosial Twitter menggunakan metode naive Bayes classifier. Indonesian Journal of Applied Statistics, 2(1), 34. https://doi.org/10.13057/ijas.v2i1.29998

Angelone, A. M., Galassi, A., & Vittorini, P. (2022). Improved automated classification of sentences in data science exercises. In F. De la Prieta et al. (Eds.), Methodologies and intelligent systems for technology enhanced learning (pp. 12–21). Springer. https://doi.org/10.1007/978-3-030-86618-1_2

Arasy, A., Agustian, S., Handayani, L., & Iskandar, I. (2025). Klasifikasi sentimen menggunakan metode multilayer perceptron dengan fitur TF-IDF. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 5(3), 908–919. https://doi.org/10.57152/malcom.v5i3.2052

Ardinata, P. M. S., Permana, A. A. J., Wijaya, I. N. S. W., Teknik, F., & Kejuruan, D. (2024). Identifikasi dan normalisasi teks slang dengan FastText pada Twitter dalam bahasa Indonesia. Jurnal Pendidikan Teknologi dan Kejuruan, 21(1). https://doi.org/10.23887/jptkundiksha.v21i1.66381

Baihaqi, W. M., Yunita, I. R., Damayanti, A. S. T., & Akhaerunnisa, L. (2023). Analysis of classification algorithm performance on user review sentiment of the Muamalat DIN application. CogITo Smart Journal, 9(2), 241–251. https://doi.org/10.31154/cogito.v9i2.511.241-251

El Saputra, Y., Agustian, S., Yusra, Y., & Ramadhani, S. (2024). Klasifikasi sentimen SVM dengan dataset yang kecil pada kasus Kaesang sebagai ketua umum PSI. KLIK: Kajian Ilmiah Informatika dan Komputer, 4(6), 2902–2908. https://doi.org/10.30865/klik.v4i6.1944

Goh, A. M., & Yann, X. L. (2021). A novel sentiments analysis model using perceptron classifier. International Journal of Electronics Engineering and Applications, 10(2), 1–10. https://doi.org/10.30696/IJEEA.IX.IV.2021.01-10

Heidari, A. A., Faris, H., Mirjalili, S., Aljarah, I., & Mafarja, M. (2020). Ant lion optimizer: Theory, literature review, and application in multi-layer perceptron neural networks. In S. Mirjalili, J. Song Dong, & A. Lewis (Eds.), Nature-inspired optimizers: Theories, literature reviews and applications (pp. 23–46). Springer. https://doi.org/10.1007/978-3-030-12127-3_3

Khan, A., Majumdar, D., & Mondal, B. (2025). Sentiment analysis of emoji fused reviews using machine learning and BERT. Scientific Reports, 15(1), Article 7538. https://doi.org/10.1038/s41598-025-92286-0

Kuyumcu, B., Aksakalli, C., & Delil, S. (2019). An automated new approach in fast text classification (fastText). In Proceedings of the 3rd International Conference on Natural Language Processing and Information Retrieval (pp. 1–4). ACM. https://doi.org/10.1145/3342827.3342828

Naldi, A., & Agustian, S. (2023). Klasifikasi sentimen vaksin COVID-19 menggunakan K-nearest neighbor berdasarkan word embeddings FastText pada Twitter. ZONAsi: Jurnal Sistem Informasi, 5(2), 323–333. https://doi.org/10.31849/zn.v5i2.12548

Pasaribu, F. H., Khairina, N., Noviandri, D., Susilawati, S., & Syah, R. (2023). Analysis of the multilayer perceptron algorithm on Twitter user’s sentiment towards the COVID-19 vaccine. Journal of Informatics and Telecommunication Engineering, 7(1), 155–163. https://doi.org/10.31289/jite.v7i1.9664

Pranata, J., Agustian, S., Jasril, J., & Haerani, E. (2025). Penggunaan model bahasa indoBERT pada metode random forest untuk klasifikasi sentimen dengan dataset terbatas. Building of Informatics, Technology and Science (BITS), 6(3), 1668–1676. https://doi.org/10.47065/bits.v6i3.6335

Prastowo, E. Y., Endroyono, & Yuniarno, E. M. (2019). Combining SentiStrength and multilayer perceptron in Twitter sentiment classification. In 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA) (pp. 381–386). IEEE. https://doi.org/10.1109/ISITIA.2019.8937134

Qi, Y., & Shabrina, Z. (2023). Sentiment analysis using Twitter data: A comparative application of lexicon- and machine-learning-based approach. Social Network Analysis and Mining, 13(1), Article 31. https://doi.org/10.1007/s13278-023-01030-x

Rohman, N. (2023). Peran Partai Solidaritas Indonesia (PSI) dalam pemilihan presiden 2024: Analisis terhadap pemilih pemula. JPW (Jurnal Politik Walisongo), 5(1), 85–102. https://doi.org/10.21580/jpw.v5i1.18330

Susilawati, S., & Iqbal, M. (2025). Penerapan metode Naïve Bayes untuk mengidentifikasi sentimen pengguna pada ulasan aplikasi ReelShort di Google Play Store. SIMKOM, 10(1), 49–59. https://doi.org/10.51717/simkom.v10i1.686

Umer, M., et al. (2023). Impact of convolutional neural network and FastText embedding on text classification. Multimedia Tools and Applications, 82(4), 5569–5585. https://doi.org/10.1007/s11042-022-13459-x

Wang, Y., Guo, J., Yuan, C., & Li, B. (2022). Sentiment analysis of Twitter data. Applied Sciences, 12(22), Article 11775. https://doi.org/10.3390/app122211775

Wijaya, T. N., Indriati, R., & Muzaki, M. N. (2021). Analisis sentimen opini publik tentang Undang-Undang Cipta Kerja pada Twitter. Jambura Journal of Electrical and Electronics Engineering, 3(2), 78–83. https://doi.org/10.37905/jjeee.v3i2.10885

Wisnu, H., Afif, M., & Ruldevyani, Y. (2020). Sentiment analysis on customer satisfaction of digital payment in Indonesia: A comparative study using KNN and Naïve Bayes. In Journal of Physics: Conference Series (Vol. 1444, No. 1, Article 012034). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1444/1/012034

Yang, E., et al. (2023). Transformer versus traditional natural language processing: How much data is enough for automated radiology report classification? British Journal of Radiology, 96(1149). https://doi.org/10.1259/bjr.20220769

Yusanto, Y., & Akbar, M. (2024). Analisis sentimen Jogja darurat sampah di Twitter menggunakan ekstraksi fitur model Word2Vec dan convolutional neural network. TIN: Terapan Informatika Nusantara, 4(10), 679–688. https://doi.org/10.47065/tin.v4i10.4952


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Sentimen Masyarakat Terhadap Kaesang Pangarep pada Media Sosial Twitter/X Menggunakan MLP Classifier dengan Fitur FastText

Dimensions Badge
Article History
Published: 2025-12-25
Abstract View: 292 times
PDF Download: 95 times
Issue
Section
Articles

Most read articles by the same author(s)

1 2 > >>