Implementasi Metode Teachable Machine Untuk Pengidentifikasian Ekspresi Wajah Secara Real-Time


  • Ridho Danang Budi Pratama Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia
  • Faldy Irwiensyah * Mail Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia
  • (*) Corresponding Author
Keywords: Expression Detection; Real-Time; Teachable Machine; Tensorflow.Js; Webcam

Abstract

This study implements a direct facial expression detection system via the web using teachable machine and tensorflow.js. This system utilizes machine learning technology that operates directly in the browser without the need for a special server. With the transfer learning method, the model is trained to recognize various facial expressions such as happy, sad, angry, and neutral. This implementation uses a convolutional neural network (cnn) architecture that has been optimized for web activities. The results of the test show a detection accuracy level of 85-90% with a response time of under 200ms. This solution provides a lightweight option for emotion recognition applications that can be easily accessed via a web browser. The main advantages of this system are ease of implementation, cross-platform support, and maintaining data privacy because the process is carried out locally.

Downloads

Download data is not yet available.

References

S. Ullah, A. Jan, and G. M. Khan, “Facial Expression Recognition Using Machine Learning Techniques,” International Conference on Engineering and Emerging Technologies (ICEET), Istanbul, Turkey, 2021, pp. 1–6, doi: 10.1109/ICEET53442.2021.9659631.

L. Ai and K. Chen, “Developing a Machine Learning-Based Algorithm for Facial Expression Recognition: Research and Implementation,” International Journal of e-Collaboration, vol. 21, pp. 1–19, 2025, doi: 10.4018/ijec.368068.

N. Vinod and M. Vinuthna, “Emotion Detection from Facial Expressions Using Deep Learning,” International Journal of Scientific Research in Engineering and Management, 2025, doi: 10.55041/ijsrem44585.

D. Hebri, R. Nuthakki, A. Digal, K. Venkatesan, S. Chawla, and R. Reddy, “Effective Facial Expression Recognition System Using Machine Learning,” EAI Endorsed Transactions on Internet of Things, 2024, doi: 10.4108/eetiot.5362.

M. Meilany and R. Rahmadewi, “Implementasi Deteksi Ekspresi Wajah, Usia, dan Gender Real‑Time Berbasis TensorFlow,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 9, no. 2, pp. 3203–3209, Apr. 2025, doi:10.36040/jati.v9i2.13300.

F. A. Ahmad and N. Pratiwi, "Implementation of Face Recognition, Attendance Detection, and Geolocation using TensorFlow Lite and Google ML Kit in a Mobile Attendance Application," SISTEMASI, vol. 14, no. 1, pp. 172–186, 2025, doi: https://doi.org/10.32520/stmsi.v14i1.4775

U. H. Yakip, "Rancang bangun sistem klasifikasi mineral dan batuan menggunakan tensorflow.js," Doctoral Dissertation, 2020. [online]. Available: http://repository.unhas.ac.id:443/id/eprint/1782

N. Anjani, H. Hasnawati, and S. Sahidin, "Aplikasi Deteksi Ekspresi Wajah Dengan Mesin Learning," Jurnal Sintaks Logika, vol. 4, no. 3, pp. 112–123, 2024, doi: https://doi.org/10.31850/jsilog.v4i3.3338

C. Ryan, "Facial Recognition Technology and a Proposed Expansion of Human Rights," Federal Communications Law Journal, vol. 76, p. 87, 2023. [online]. Available: https://heinonline.org/HOL/LandingPage?handle=hein.journals/fedcom76&div=8&id=&page=

N. M. Ma’muriyah and H. S. Simon, "Penentuan Posisi Objek Berbasis Image Processing Dengan Menggunakan Metode Convolutional Neural Network," Telcomatics, vol. 5, no. 2, 2020. [online]. Available: https://journal.uib.ac.id/index.php/telcomatics/article/view/4786

C. Chazar and M. H. Rafsanjani, "Penerapan Teachable Machine Pada Klasifikasi Machine Learning Untuk Identifikasi Bibit Tanaman," Prosiding Seminar Nasional Inovasi dan Adopsi Teknologi (INOTEK), vol. 2, no. 1, May 2022, pp. 32–40, doi: https://doi.org/10.35969/inotek.v2i1.207

R. F. Muharram and A. Suryadi, "Implementasi artificial intelligence untuk deteksi masker secara realtime dengan tensorflow dan ssdmobilenet berbasis python," Jurnal Widya, vol. 3, no. 2, pp. 281–290, 2022, doi: https://doi.org/10.54593/awl.v3i2.122

M. A. Rusydi and I. M. Suartana, "Implementasi dan Analisis Immersive Web Berbasis WebGL untuk Anak Belajar Mengenal Objek Dengan Tensorflow JS," Journal of Informatics and Computer Science (JINACS), pp. 711–719, 2025, doi: https://doi.org/10.26740/jinacs.v6n03.p711-719

A. Dheayanti, "Rancang Bangun Sistem Pendeteksi Pemakaian Masker Sebagai Protokol Kesehatan Covid-19," Repositori Universitas Pertamina, 2022.

D. I. Mulyana and M. A. Rofik, "Implementasi deteksi real time klasifikasi jenis kendaraan di Indonesia menggunakan metode YOLOV5," Jurnal Pendidikan Tambusai, vol. 6, no. 3, pp. 13971–13982, 2022. [online]. Available: https://pdfs.semanticscholar.org/760b/c940df4578f00390e7d8ef8d5d5694b1fcd6.pdf

D. A. Ayubi, D. A. Prasetya, and I. Mujahidin, "Pendeteksi Wajah Secara Real Time pada 2 Degree of Freedom (DOF) Kepala Robot Menggunakan Deep Integral Image Cascade," Cyclotron, vol. 3, no. 1, 2020, doi: https://doi.org/10.30651/cl.v3i1.4306

E. Handoyo, Y. A. A. Soetrisno, E. W. Sinuraya, D. Denis, I. Santoso, and H. M. Irsyad, "Designing a Machine Learning Model Using Tensorflow in the Cato Application to Recognize Human Body Members," Justek: Jurnal Sains dan Teknologi, vol. 5, no. 2, pp. 285–294, 2022, doi:https://doi.org/10.31764/justek.v5i2.11818

Y. A. Hasma and W. Silfianti, "Implementasi Deep Learning Menggunakan Framework Tensorflow Dengan Metode Faster Regional Convolutional Neural Network Untuk Pendeteksian Jerawat," Jurnal Ilmiah Teknologi dan Rekayasa, vol. 23, no. 2, pp. 89–102, 2020, doi: http://dx.doi.org/10.35760/tr.2018.v23i2.2459

I. B. Santoso, et al., "Educating on the Application of Tensorflow in Artificial Intelligence, Machine Learning and Deep Learning," Society: Jurnal Pengabdian Masyarakat, vol. 4, no. 2, pp. 318–325, 2025, doi: 10.55824/jpm.v4i2.547

N. Destiana, N. Aisyah, A. Sebayang, and I. Yuniasih, "Implementasi Deep Learning Berbasis Tensorflow Untuk Pengenalan Wajah," Jurnal Sistem Informasi dan Aplikasi (JSIA), vol. 2, no. 2, pp. 31–34, 2024, doi: https://doi.org/10.52958/jsia.v2i2.8560

I. Maulana, N. Khairunisa, and R. Mufidah, “Deteksi bentuk wajah menggunakan convolutional neural network (CNN),” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 6, pp. 3348–3355, 2023, doi: https://doi.org/10.36040/jati.v7i6.8171


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Metode Teachable Machine Untuk Pengidentifikasian Ekspresi Wajah Secara Real-Time

Dimensions Badge
Article History
Submitted: 2025-06-28
Published: 2025-07-12
Abstract View: 374 times
PDF Download: 106 times
How to Cite
Pratama, R., & Irwiensyah, F. (2025). Implementasi Metode Teachable Machine Untuk Pengidentifikasian Ekspresi Wajah Secara Real-Time. Journal of Information System Research (JOSH), 6(4), 1879-1885. https://doi.org/10.47065/josh.v6i4.7819
Issue
Section
Articles