Analisis Sentimen Terhadap Ulasan Pengguna Pada Aplikasi BCA Mobile Menggunakan Metode Naïve Bayes
Abstract
Technological developments have made the payment process easier, which has resulted in a plethora of smartphone applications. As mobile phones become more prevalent, commercial and public organizations are looking to improve the services they provide by implementing mobile-based solutions. The banking industry has seen tremendous expansion, as evidenced by the use of mobile banking solutions by companies such as BCA Bank. Especially in the midst of the pandemic, the BCA Mobile app is an important advancement in online banking that provides benefits and convenience to individuals who frequently transact online. Bank BCA can continue to offer the most useful features to customers while proactively improving services that are currently lacking. This study emphasizes the importance of improving sentiment analysis techniques to understand customer feedback more fully and provide better mobile banking services. This study uses the Naïve Bayes approach to analyze user sentiment towards the BCA Mobile application on the Google Play Store by finding and categorizing user reviews based on the sentiment they exhibit i.e. positive, negative, or neutral is the objective of this study. Through online data mining, 2000 user review data were collected on January 11, 2024, resulting in 1173 sentiments, 163 positive reviews and 1010 negative reviews in total. The Naïve Bayes algorithm produced an accuracy of 86.83%, precision of 52.78%, and recall of 46.91%.
Downloads
References
R. Yuwono, A. Wibowo, S. H. Wijoyo, and R. I. Rokhmawati, “Analisis Pengalaman Pengguna Pada Aplikasi Mobile Banking di Indonesia Dengan Menggunakan Usability a dan User Experience Questionnaire (UEQ) (Studi pada JakOne Mobile dan BCA Mobile),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 6, pp. 5666–5673, 2019.
Palupi Permata Rahmi, A. Nur Aryanti, and D. Abdul Aziz, “Pengaruh Kualitas Layanan Mobile Banking Terhadap Kepuasan Nasabah Bank BCA,” Arbitr. J. Econ. Account., vol. 3, no. 3, pp. 710–722, 2023, doi: 10.47065/arbitrase.v3i3.660.
C. A. Novitasari, A. S. Manggabarani, and M. Astuti, “Analisis Kepuasan Nasabah Mobile Banking Pada Bank BCA,” J. Teknol. dan Manaj., vol. 19, no. 2, pp. 1–12, 2021, doi: 10.52330/jtm.v19i2.26.
B. Permatasari, “Pengaruh Persepsi Kemudahan, Persepsi Keamanan, Dan Persepsi Kepercayaan Terhadap Kepuasan Pelanggan Dalam Menggunakan Mobile Banking Bca,” Journals Econ. Bus., vol. 2, no. 2, pp. 1–16, 2022, doi: 10.33365/jeb.v2i2.112.
Kusumawardhani, “Analisis Pengaruh Kualitas Layanan, Citra Merek Dan Promosi Terhadap Loyalitas Konsumen Pengguna Mobile Banking (BCA MOBILE),” J. Cahaya Mandalika, vol. 2, no. 1, pp. 275–282, 2022, [Online]. Available: https://ojs.cahayamandalika.com/index.php/jtm/article/view/734
M. Yusuf et al., “Analisis sentimen opini pengguna aplikasi vidio pada ulasan playstore menggunakan algoritma naive bayes,” vol. 7, no. 4, pp. 2767–2774, 2023.
D. N. N. Husnina, D. E. Ratnawati, and B. Rahayudi, “Analisis Sentimen Pengguna Aplikasi RedBus berdasarkan Ulasan di Google Play Store menggunakan Metode Naïve Bayes,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 2, pp. 737–743, 2023.
A. Made, K. Dewi, S. Hadi Wijoyo, and A. R. Perdanakusuma, “Evaluasi Usability Aplikasi Mobile Banking BCA dengan menggunakan Usability Testing dan System Usability Scale (Studi Kasus: BCA Kota Singaraja),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 10, pp. 2548–964, 2022, [Online]. Available: http://j-ptiik.ub.ac.id
H. Dhery, A. Assyam, and F. N. Hasan, “Analisis Sentimen Twitter Terhadap Perpindahan Ibu Kota Negara Ke IKN Nusantara Menggunakan Orange Data Mining,” Media Online), vol. 4, no. 1, pp. 341–349, 2023, doi: 10.30865/klik.v4i1.957.
I. D. Onantya and P. P. Adikara, “Analisis Sentimen Pada Ulasan Aplikasi BCA Mobile Menggunakan BM25 Dan Improved K-Nearest Neighbor,” J-Ptiik.Ub.Ac.Id, vol. 3, no. 3, pp. 2575–2580, 2019.
F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” J. SIMETRIS, vol. 10, no. 2, pp. 681–686, 2019.
K. Anwar, “Analisa sentimen Pengguna Instagram Di Indonesia Pada Review Smartphone Menggunakan Naive Bayes,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 4, pp. 148–155, 2022, doi: 10.30865/klik.v2i4.315.
C. F. Hasri and D. Alita, “Penerapan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Analisis Sentimen Terhadap Dampak Virus Corona Di Twitter,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 3, no. 2, pp. 145–160, 2022.
A. Miftahusalam, H. Pratiwi, I. Slamet, P. S. Statistika, and U. S. Maret, “184-Article Text-1295-1-10-20230724,” pp. 1–8, 2023.
M. Iqbal, A. Davy Wiranata, R. Suwito, and R. Faiz Ananda, “KLIK: Kajian Ilmiah Informatika dan Komputer Perbandingan Algoritma Naïve Bayes, KNN, dan Decision Tree terhadap Ulasan Aplikasi Threads dan Twitter,” Media Online, vol. 4, no. 3, pp. 1799–1807, 2023, doi: 10.30865/klik.v4i3.1402.
D. C. Ramadhan and F. Irwiensyah, “Analisis Sentimen Pengguna Terhadap Aplikasi Bing Chat di Google Play Store dengan Metode Naïve Bayes,” vol. 4, no. 5, pp. 2410–2418, 2024, doi: 10.30865/klik.v4i5.1769.
Fajar Sidik, Ibnu Suhada, Azhar Haikal Anwar, and Firman Noor Hasan, “Analisis Sentimen Terhadap Pembelajaran Daring dengan Algoritma Naïve Bayes Classifier,” J. Linguist. Komputasional, vol. 5, no. 1, pp. 34–43, 2022.
B. K. Widodo, N. H. Matondang, and D. S. Prasvita, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Penggunaan Aplikasi Jobstreet,” Techno.Com, vol. 21, no. 3, pp. 523–533, 2022, doi: 10.33633/tc.v21i3.6361.
Irvandi, B. Irawan, and O. Nurdiawan, “Naive Bayes Dan Wordcloud Untuk Analisis Sentimen Wisata Halal Pulau Lombok,” INFOTECH J., vol. 9, no. 1, pp. 236–242, 2023, doi: 10.31949/infotech.v9i1.5322.
N. R. Siahaan, R. Y. Tiffany, and S. R. E. Sinaga, “Analisis Sentimen Ulasan Aplikasi Media Sosial Whatsapp Menggunakan Metode Naive Bayes Classifier,” J. Ilm. Betrik, vol. 14, no. 02, pp. 343–354, 2023, [Online]. Available: https://ejournal.pppmitpa.or.id/index.php/betrik/article/view/104%0Ahttps://ejournal.pppmitpa.or.id/index.php/betrik/article/download/104/76
F. Matheos Sarimole and K. Kudrat, “Analisis Sentimen Terhadap Aplikasi Satu Sehat Pada Twitter Menggunakan Algoritma Naive Bayes Dan Support Vector Machine,” J. Sains dan Teknol., vol. 5, no. 3, pp. 783–790, 2024, doi: 10.55338/saintek.v5i3.2702.
N. S. Fauziah and R. D. Dana, “Implementasi Algoritma Naive bayes dalam Klasifikasi Status Kesejahteraan Masyarakat Desa Gunungsari,” Blend Sains J. Tek., vol. 1, no. 4, pp. 295–305, 2023, doi: 10.56211/blendsains.v1i4.234.
I. P. Rahayu, A. Fauzi, and J. Indra, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Naive Bayes Dan Support Vector Machine,” vol. 4, pp. 296–301, 2022, doi: 10.30865/json.v4i2.5381.
Ernianti Hasibuan and Elmo Allistair Heriyanto, “Analisis Sentimen Pada Ulasan Aplikasi Amazon Shopping Di Google Play Store Menggunakan Naive Bayes Classifier,” J. Tek. dan Sci., vol. 1, no. 3, pp. 13–24, 2022, doi: 10.56127/jts.v1i3.434.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Terhadap Ulasan Pengguna Pada Aplikasi BCA Mobile Menggunakan Metode Naïve Bayes
Pages: 911-921
Copyright (c) 2024 Muchammad Gamma Al Hakim, Faldy Irwiensyah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















